MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem1 Structured version   Visualization version   GIF version

Theorem pgpfac1lem1 18296
Description: Lemma for pgpfac1 18302. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
Assertion
Ref Expression
pgpfac1lem1 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈)
Distinct variable groups:   𝑤,𝐴   𝑤,   𝑤,𝑃   𝑤,𝐺   𝑤,𝑈   𝑤,𝐶   𝑤,𝑆   𝑤,𝑊   𝜑,𝑤   𝑤,𝐾
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤)   𝑂(𝑤)   0 (𝑤)

Proof of Theorem pgpfac1lem1
StepHypRef Expression
1 pgpfac1.ss . . . 4 (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
21adantr 480 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ⊆ 𝑈)
3 pgpfac1.g . . . . . 6 (𝜑𝐺 ∈ Abel)
4 ablgrp 18021 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
5 pgpfac1.b . . . . . . 7 𝐵 = (Base‘𝐺)
65subgacs 17452 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
7 acsmre 16136 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘𝐵) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
83, 4, 6, 74syl 19 . . . . 5 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
98adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
10 eldifi 3694 . . . . . 6 (𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)) → 𝐶𝑈)
1110adantl 481 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶𝑈)
1211snssd 4281 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → {𝐶} ⊆ 𝑈)
13 pgpfac1.u . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝐺))
1413adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝑈 ∈ (SubGrp‘𝐺))
15 pgpfac1.k . . . . 5 𝐾 = (mrCls‘(SubGrp‘𝐺))
1615mrcsscl 16103 . . . 4 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ {𝐶} ⊆ 𝑈𝑈 ∈ (SubGrp‘𝐺)) → (𝐾‘{𝐶}) ⊆ 𝑈)
179, 12, 14, 16syl3anc 1318 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐾‘{𝐶}) ⊆ 𝑈)
18 pgpfac1.s . . . . . . 7 𝑆 = (𝐾‘{𝐴})
195subgss 17418 . . . . . . . . . 10 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
2013, 19syl 17 . . . . . . . . 9 (𝜑𝑈𝐵)
21 pgpfac1.au . . . . . . . . 9 (𝜑𝐴𝑈)
2220, 21sseldd 3569 . . . . . . . 8 (𝜑𝐴𝐵)
2315mrcsncl 16095 . . . . . . . 8 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
248, 22, 23syl2anc 691 . . . . . . 7 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
2518, 24syl5eqel 2692 . . . . . 6 (𝜑𝑆 ∈ (SubGrp‘𝐺))
26 pgpfac1.w . . . . . 6 (𝜑𝑊 ∈ (SubGrp‘𝐺))
27 pgpfac1.l . . . . . . 7 = (LSSum‘𝐺)
2827lsmsubg2 18085 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
293, 25, 26, 28syl3anc 1318 . . . . 5 (𝜑 → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
3029adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
3120sselda 3568 . . . . . 6 ((𝜑𝐶𝑈) → 𝐶𝐵)
3210, 31sylan2 490 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶𝐵)
3315mrcsncl 16095 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐶𝐵) → (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺))
349, 32, 33syl2anc 691 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺))
3527lsmlub 17901 . . . 4 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (((𝑆 𝑊) ⊆ 𝑈 ∧ (𝐾‘{𝐶}) ⊆ 𝑈) ↔ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈))
3630, 34, 14, 35syl3anc 1318 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (((𝑆 𝑊) ⊆ 𝑈 ∧ (𝐾‘{𝐶}) ⊆ 𝑈) ↔ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈))
372, 17, 36mpbi2and 958 . 2 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈)
3827lsmub1 17894 . . . . . 6 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
3930, 34, 38syl2anc 691 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
4027lsmub2 17895 . . . . . . 7 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) → (𝐾‘{𝐶}) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
4130, 34, 40syl2anc 691 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐾‘{𝐶}) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
4232snssd 4281 . . . . . . . 8 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → {𝐶} ⊆ 𝐵)
439, 15, 42mrcssidd 16108 . . . . . . 7 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → {𝐶} ⊆ (𝐾‘{𝐶}))
44 snssg 4268 . . . . . . . 8 (𝐶𝐵 → (𝐶 ∈ (𝐾‘{𝐶}) ↔ {𝐶} ⊆ (𝐾‘{𝐶})))
4532, 44syl 17 . . . . . . 7 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐶 ∈ (𝐾‘{𝐶}) ↔ {𝐶} ⊆ (𝐾‘{𝐶})))
4643, 45mpbird 246 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶 ∈ (𝐾‘{𝐶}))
4741, 46sseldd 3569 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶 ∈ ((𝑆 𝑊) (𝐾‘{𝐶})))
48 eldifn 3695 . . . . . 6 (𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)) → ¬ 𝐶 ∈ (𝑆 𝑊))
4948adantl 481 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ¬ 𝐶 ∈ (𝑆 𝑊))
5039, 47, 49ssnelpssd 3681 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶})))
5127lsmub1 17894 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 𝑊))
5225, 26, 51syl2anc 691 . . . . . . . 8 (𝜑𝑆 ⊆ (𝑆 𝑊))
5322snssd 4281 . . . . . . . . . . 11 (𝜑 → {𝐴} ⊆ 𝐵)
548, 15, 53mrcssidd 16108 . . . . . . . . . 10 (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴}))
5554, 18syl6sseqr 3615 . . . . . . . . 9 (𝜑 → {𝐴} ⊆ 𝑆)
56 snssg 4268 . . . . . . . . . 10 (𝐴𝑈 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
5721, 56syl 17 . . . . . . . . 9 (𝜑 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
5855, 57mpbird 246 . . . . . . . 8 (𝜑𝐴𝑆)
5952, 58sseldd 3569 . . . . . . 7 (𝜑𝐴 ∈ (𝑆 𝑊))
6059adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐴 ∈ (𝑆 𝑊))
6139, 60sseldd 3569 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶})))
623adantr 480 . . . . . . 7 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐺 ∈ Abel)
6327lsmsubg2 18085 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) → ((𝑆 𝑊) (𝐾‘{𝐶})) ∈ (SubGrp‘𝐺))
6462, 30, 34, 63syl3anc 1318 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) ∈ (SubGrp‘𝐺))
65 pgpfac1.2 . . . . . . 7 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
6665adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
67 psseq1 3656 . . . . . . . . 9 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (𝑤𝑈 ↔ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈))
68 eleq2 2677 . . . . . . . . 9 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (𝐴𝑤𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶}))))
6967, 68anbi12d 743 . . . . . . . 8 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → ((𝑤𝑈𝐴𝑤) ↔ (((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶})))))
70 psseq2 3657 . . . . . . . . 9 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → ((𝑆 𝑊) ⊊ 𝑤 ↔ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
7170notbid 307 . . . . . . . 8 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (¬ (𝑆 𝑊) ⊊ 𝑤 ↔ ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
7269, 71imbi12d 333 . . . . . . 7 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤) ↔ ((((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶}))) → ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶})))))
7372rspcv 3278 . . . . . 6 (((𝑆 𝑊) (𝐾‘{𝐶})) ∈ (SubGrp‘𝐺) → (∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤) → ((((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶}))) → ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶})))))
7464, 66, 73sylc 63 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶}))) → ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
7561, 74mpan2d 706 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈 → ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
7650, 75mt2d 130 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ¬ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈)
77 npss 3679 . . 3 (¬ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈 ↔ (((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈 → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈))
7876, 77sylib 207 . 2 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈 → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈))
7937, 78mpd 15 1 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  cdif 3537  cin 3539  wss 3540  wpss 3541  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  Fincfn 7841  Basecbs 15695  0gc0g 15923  Moorecmre 16065  mrClscmrc 16066  ACScacs 16068  Grpcgrp 17245  SubGrpcsubg 17411  odcod 17767  gExcgex 17768   pGrp cpgp 17769  LSSumclsm 17872  Abelcabl 18017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-subg 17414  df-cntz 17573  df-lsm 17874  df-cmn 18018  df-abl 18019
This theorem is referenced by:  pgpfac1lem2  18297  pgpfac1lem3  18299
  Copyright terms: Public domain W3C validator