MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnsg3 Structured version   Visualization version   GIF version

Theorem isnsg3 17451
Description: A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg3.1 𝑋 = (Base‘𝐺)
isnsg3.2 + = (+g𝐺)
isnsg3.3 = (-g𝐺)
Assertion
Ref Expression
isnsg3 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isnsg3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 17449 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 isnsg3.1 . . . . . 6 𝑋 = (Base‘𝐺)
3 isnsg3.2 . . . . . 6 + = (+g𝐺)
4 isnsg3.3 . . . . . 6 = (-g𝐺)
52, 3, 4nsgconj 17450 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝑋𝑦𝑆) → ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
653expb 1258 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑥𝑋𝑦𝑆)) → ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
76ralrimivva 2954 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
81, 7jca 553 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆))
9 simpl 472 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
10 subgrcl 17422 . . . . . . . . . . . 12 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1110ad2antrr 758 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → 𝐺 ∈ Grp)
12 simprll 798 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → 𝑧𝑋)
13 eqid 2610 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
14 eqid 2610 . . . . . . . . . . . 12 (invg𝐺) = (invg𝐺)
152, 3, 13, 14grplinv 17291 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
1611, 12, 15syl2anc 691 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
1716oveq1d 6564 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = ((0g𝐺) + 𝑤))
182, 14grpinvcl 17290 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
1911, 12, 18syl2anc 691 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((invg𝐺)‘𝑧) ∈ 𝑋)
20 simprlr 799 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → 𝑤𝑋)
212, 3grpass 17254 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑧) ∈ 𝑋𝑧𝑋𝑤𝑋)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
2211, 19, 12, 20, 21syl13anc 1320 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + 𝑧) + 𝑤) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
232, 3, 13grplid 17275 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑤𝑋) → ((0g𝐺) + 𝑤) = 𝑤)
2411, 20, 23syl2anc 691 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((0g𝐺) + 𝑤) = 𝑤)
2517, 22, 243eqtr3d 2652 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) = 𝑤)
2625oveq1d 6564 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) = (𝑤 ((invg𝐺)‘𝑧)))
272, 3, 4, 14, 11, 20, 12grpsubinv 17311 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (𝑤 ((invg𝐺)‘𝑧)) = (𝑤 + 𝑧))
2826, 27eqtrd 2644 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) = (𝑤 + 𝑧))
29 simprr 792 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (𝑧 + 𝑤) ∈ 𝑆)
30 simplr 788 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆)
31 oveq1 6556 . . . . . . . . . 10 (𝑥 = ((invg𝐺)‘𝑧) → (𝑥 + 𝑦) = (((invg𝐺)‘𝑧) + 𝑦))
32 id 22 . . . . . . . . . 10 (𝑥 = ((invg𝐺)‘𝑧) → 𝑥 = ((invg𝐺)‘𝑧))
3331, 32oveq12d 6567 . . . . . . . . 9 (𝑥 = ((invg𝐺)‘𝑧) → ((𝑥 + 𝑦) 𝑥) = ((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)))
3433eleq1d 2672 . . . . . . . 8 (𝑥 = ((invg𝐺)‘𝑧) → (((𝑥 + 𝑦) 𝑥) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)) ∈ 𝑆))
35 oveq2 6557 . . . . . . . . . 10 (𝑦 = (𝑧 + 𝑤) → (((invg𝐺)‘𝑧) + 𝑦) = (((invg𝐺)‘𝑧) + (𝑧 + 𝑤)))
3635oveq1d 6564 . . . . . . . . 9 (𝑦 = (𝑧 + 𝑤) → ((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)) = ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)))
3736eleq1d 2672 . . . . . . . 8 (𝑦 = (𝑧 + 𝑤) → (((((invg𝐺)‘𝑧) + 𝑦) ((invg𝐺)‘𝑧)) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) ∈ 𝑆))
3834, 37rspc2va 3294 . . . . . . 7 (((((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑧 + 𝑤) ∈ 𝑆) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) ∈ 𝑆)
3919, 29, 30, 38syl21anc 1317 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → ((((invg𝐺)‘𝑧) + (𝑧 + 𝑤)) ((invg𝐺)‘𝑧)) ∈ 𝑆)
4028, 39eqeltrrd 2689 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ ((𝑧𝑋𝑤𝑋) ∧ (𝑧 + 𝑤) ∈ 𝑆)) → (𝑤 + 𝑧) ∈ 𝑆)
4140expr 641 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) ∧ (𝑧𝑋𝑤𝑋)) → ((𝑧 + 𝑤) ∈ 𝑆 → (𝑤 + 𝑧) ∈ 𝑆))
4241ralrimivva 2954 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → ∀𝑧𝑋𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 → (𝑤 + 𝑧) ∈ 𝑆))
432, 3isnsg2 17447 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑧𝑋𝑤𝑋 ((𝑧 + 𝑤) ∈ 𝑆 → (𝑤 + 𝑧) ∈ 𝑆)))
449, 42, 43sylanbrc 695 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆) → 𝑆 ∈ (NrmSGrp‘𝐺))
458, 44impbii 198 1 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Grpcgrp 17245  invgcminusg 17246  -gcsg 17247  SubGrpcsubg 17411  NrmSGrpcnsg 17412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-nsg 17415
This theorem is referenced by:  nsgacs  17453  0nsg  17462  nsgid  17463  ghmnsgima  17507  ghmnsgpreima  17508  cntrsubgnsg  17596  clsnsg  21723
  Copyright terms: Public domain W3C validator