MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntrsubgnsg Structured version   Visualization version   GIF version

Theorem cntrsubgnsg 17596
Description: A central subgroup is normal. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypothesis
Ref Expression
cntrnsg.z 𝑍 = (Cntr‘𝑀)
Assertion
Ref Expression
cntrsubgnsg ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) → 𝑋 ∈ (NrmSGrp‘𝑀))

Proof of Theorem cntrsubgnsg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . 2 ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) → 𝑋 ∈ (SubGrp‘𝑀))
2 simplr 788 . . . . . . . . 9 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑋𝑍)
3 simprr 792 . . . . . . . . 9 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑦𝑋)
42, 3sseldd 3569 . . . . . . . 8 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑦𝑍)
5 eqid 2610 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
6 eqid 2610 . . . . . . . . . 10 (Cntz‘𝑀) = (Cntz‘𝑀)
75, 6cntrval 17575 . . . . . . . . 9 ((Cntz‘𝑀)‘(Base‘𝑀)) = (Cntr‘𝑀)
8 cntrnsg.z . . . . . . . . 9 𝑍 = (Cntr‘𝑀)
97, 8eqtr4i 2635 . . . . . . . 8 ((Cntz‘𝑀)‘(Base‘𝑀)) = 𝑍
104, 9syl6eleqr 2699 . . . . . . 7 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑦 ∈ ((Cntz‘𝑀)‘(Base‘𝑀)))
11 simprl 790 . . . . . . 7 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑥 ∈ (Base‘𝑀))
12 eqid 2610 . . . . . . . 8 (+g𝑀) = (+g𝑀)
1312, 6cntzi 17585 . . . . . . 7 ((𝑦 ∈ ((Cntz‘𝑀)‘(Base‘𝑀)) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
1410, 11, 13syl2anc 691 . . . . . 6 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
1514oveq1d 6564 . . . . 5 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → ((𝑦(+g𝑀)𝑥)(-g𝑀)𝑥) = ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥))
16 subgrcl 17422 . . . . . . 7 (𝑋 ∈ (SubGrp‘𝑀) → 𝑀 ∈ Grp)
1716ad2antrr 758 . . . . . 6 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑀 ∈ Grp)
185subgss 17418 . . . . . . . 8 (𝑋 ∈ (SubGrp‘𝑀) → 𝑋 ⊆ (Base‘𝑀))
1918ad2antrr 758 . . . . . . 7 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑋 ⊆ (Base‘𝑀))
2019, 3sseldd 3569 . . . . . 6 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → 𝑦 ∈ (Base‘𝑀))
21 eqid 2610 . . . . . . 7 (-g𝑀) = (-g𝑀)
225, 12, 21grppncan 17329 . . . . . 6 ((𝑀 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → ((𝑦(+g𝑀)𝑥)(-g𝑀)𝑥) = 𝑦)
2317, 20, 11, 22syl3anc 1318 . . . . 5 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → ((𝑦(+g𝑀)𝑥)(-g𝑀)𝑥) = 𝑦)
2415, 23eqtr3d 2646 . . . 4 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥) = 𝑦)
2524, 3eqeltrd 2688 . . 3 (((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦𝑋)) → ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥) ∈ 𝑋)
2625ralrimivva 2954 . 2 ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) → ∀𝑥 ∈ (Base‘𝑀)∀𝑦𝑋 ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥) ∈ 𝑋)
275, 12, 21isnsg3 17451 . 2 (𝑋 ∈ (NrmSGrp‘𝑀) ↔ (𝑋 ∈ (SubGrp‘𝑀) ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦𝑋 ((𝑥(+g𝑀)𝑦)(-g𝑀)𝑥) ∈ 𝑋))
281, 26, 27sylanbrc 695 1 ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋𝑍) → 𝑋 ∈ (NrmSGrp‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wss 3540  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Grpcgrp 17245  -gcsg 17247  SubGrpcsubg 17411  NrmSGrpcnsg 17412  Cntzccntz 17571  Cntrccntr 17572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-nsg 17415  df-cntz 17573  df-cntr 17574
This theorem is referenced by:  cntrnsg  17597
  Copyright terms: Public domain W3C validator