MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnsg3 Structured version   Unicode version

Theorem isnsg3 15715
Description: A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg3.1  |-  X  =  ( Base `  G
)
isnsg3.2  |-  .+  =  ( +g  `  G )
isnsg3.3  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
isnsg3  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  ( ( x  .+  y )  .-  x
)  e.  S ) )
Distinct variable groups:    x, y,  .-    x, G, y    x,  .+ , y    x, S, y    x, X, y

Proof of Theorem isnsg3
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 15713 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
2 isnsg3.1 . . . . . 6  |-  X  =  ( Base `  G
)
3 isnsg3.2 . . . . . 6  |-  .+  =  ( +g  `  G )
4 isnsg3.3 . . . . . 6  |-  .-  =  ( -g `  G )
52, 3, 4nsgconj 15714 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  x  e.  X  /\  y  e.  S
)  ->  ( (
x  .+  y )  .-  x )  e.  S
)
653expb 1188 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( x  e.  X  /\  y  e.  S ) )  -> 
( ( x  .+  y )  .-  x
)  e.  S )
76ralrimivva 2808 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  A. x  e.  X  A. y  e.  S  ( (
x  .+  y )  .-  x )  e.  S
)
81, 7jca 532 . 2  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  ( ( x  .+  y )  .-  x
)  e.  S ) )
9 simpl 457 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  ->  S  e.  (SubGrp `  G )
)
10 subgrcl 15686 . . . . . . . . . . . 12  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
1110ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  G  e.  Grp )
12 simprll 761 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  z  e.  X )
13 eqid 2443 . . . . . . . . . . . 12  |-  ( 0g
`  G )  =  ( 0g `  G
)
14 eqid 2443 . . . . . . . . . . . 12  |-  ( invg `  G )  =  ( invg `  G )
152, 3, 13, 14grplinv 15584 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( ( invg `  G ) `
 z )  .+  z )  =  ( 0g `  G ) )
1611, 12, 15syl2anc 661 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
( ( invg `  G ) `  z
)  .+  z )  =  ( 0g `  G ) )
1716oveq1d 6106 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
( ( ( invg `  G ) `
 z )  .+  z )  .+  w
)  =  ( ( 0g `  G ) 
.+  w ) )
182, 14grpinvcl 15583 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( invg `  G ) `  z
)  e.  X )
1911, 12, 18syl2anc 661 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
( invg `  G ) `  z
)  e.  X )
20 simprlr 762 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  w  e.  X )
212, 3grpass 15552 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 z )  e.  X  /\  z  e.  X  /\  w  e.  X ) )  -> 
( ( ( ( invg `  G
) `  z )  .+  z )  .+  w
)  =  ( ( ( invg `  G ) `  z
)  .+  ( z  .+  w ) ) )
2211, 19, 12, 20, 21syl13anc 1220 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
( ( ( invg `  G ) `
 z )  .+  z )  .+  w
)  =  ( ( ( invg `  G ) `  z
)  .+  ( z  .+  w ) ) )
232, 3, 13grplid 15568 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  w  e.  X )  ->  ( ( 0g `  G )  .+  w
)  =  w )
2411, 20, 23syl2anc 661 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
( 0g `  G
)  .+  w )  =  w )
2517, 22, 243eqtr3d 2483 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
( ( invg `  G ) `  z
)  .+  ( z  .+  w ) )  =  w )
2625oveq1d 6106 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
( ( ( invg `  G ) `
 z )  .+  ( z  .+  w
) )  .-  (
( invg `  G ) `  z
) )  =  ( w  .-  ( ( invg `  G
) `  z )
) )
272, 3, 4, 14, 11, 20, 12grpsubinv 15599 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
w  .-  ( ( invg `  G ) `
 z ) )  =  ( w  .+  z ) )
2826, 27eqtrd 2475 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
( ( ( invg `  G ) `
 z )  .+  ( z  .+  w
) )  .-  (
( invg `  G ) `  z
) )  =  ( w  .+  z ) )
29 simprr 756 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
z  .+  w )  e.  S )
30 simplr 754 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  A. x  e.  X  A. y  e.  S  ( (
x  .+  y )  .-  x )  e.  S
)
31 oveq1 6098 . . . . . . . . . 10  |-  ( x  =  ( ( invg `  G ) `
 z )  -> 
( x  .+  y
)  =  ( ( ( invg `  G ) `  z
)  .+  y )
)
32 id 22 . . . . . . . . . 10  |-  ( x  =  ( ( invg `  G ) `
 z )  ->  x  =  ( ( invg `  G ) `
 z ) )
3331, 32oveq12d 6109 . . . . . . . . 9  |-  ( x  =  ( ( invg `  G ) `
 z )  -> 
( ( x  .+  y )  .-  x
)  =  ( ( ( ( invg `  G ) `  z
)  .+  y )  .-  ( ( invg `  G ) `  z
) ) )
3433eleq1d 2509 . . . . . . . 8  |-  ( x  =  ( ( invg `  G ) `
 z )  -> 
( ( ( x 
.+  y )  .-  x )  e.  S  <->  ( ( ( ( invg `  G ) `
 z )  .+  y )  .-  (
( invg `  G ) `  z
) )  e.  S
) )
35 oveq2 6099 . . . . . . . . . 10  |-  ( y  =  ( z  .+  w )  ->  (
( ( invg `  G ) `  z
)  .+  y )  =  ( ( ( invg `  G
) `  z )  .+  ( z  .+  w
) ) )
3635oveq1d 6106 . . . . . . . . 9  |-  ( y  =  ( z  .+  w )  ->  (
( ( ( invg `  G ) `
 z )  .+  y )  .-  (
( invg `  G ) `  z
) )  =  ( ( ( ( invg `  G ) `
 z )  .+  ( z  .+  w
) )  .-  (
( invg `  G ) `  z
) ) )
3736eleq1d 2509 . . . . . . . 8  |-  ( y  =  ( z  .+  w )  ->  (
( ( ( ( invg `  G
) `  z )  .+  y )  .-  (
( invg `  G ) `  z
) )  e.  S  <->  ( ( ( ( invg `  G ) `
 z )  .+  ( z  .+  w
) )  .-  (
( invg `  G ) `  z
) )  e.  S
) )
3834, 37rspc2va 3080 . . . . . . 7  |-  ( ( ( ( ( invg `  G ) `
 z )  e.  X  /\  ( z 
.+  w )  e.  S )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  ->  (
( ( ( invg `  G ) `
 z )  .+  ( z  .+  w
) )  .-  (
( invg `  G ) `  z
) )  e.  S
)
3919, 29, 30, 38syl21anc 1217 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
( ( ( invg `  G ) `
 z )  .+  ( z  .+  w
) )  .-  (
( invg `  G ) `  z
) )  e.  S
)
4028, 39eqeltrrd 2518 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  ( z  .+  w )  e.  S
) )  ->  (
w  .+  z )  e.  S )
4140expr 615 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( (
z  .+  w )  e.  S  ->  ( w 
.+  z )  e.  S ) )
4241ralrimivva 2808 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  ->  A. z  e.  X  A. w  e.  X  ( (
z  .+  w )  e.  S  ->  ( w 
.+  z )  e.  S ) )
432, 3isnsg2 15711 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. z  e.  X  A. w  e.  X  ( ( z  .+  w )  e.  S  ->  ( w  .+  z
)  e.  S ) ) )
449, 42, 43sylanbrc 664 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
( x  .+  y
)  .-  x )  e.  S )  ->  S  e.  (NrmSGrp `  G )
)
458, 44impbii 188 1  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  ( ( x  .+  y )  .-  x
)  e.  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   ` cfv 5418  (class class class)co 6091   Basecbs 14174   +g cplusg 14238   0gc0g 14378   Grpcgrp 15410   invgcminusg 15411   -gcsg 15413  SubGrpcsubg 15675  NrmSGrpcnsg 15676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-1st 6577  df-2nd 6578  df-0g 14380  df-mnd 15415  df-grp 15545  df-minusg 15546  df-sbg 15547  df-subg 15678  df-nsg 15679
This theorem is referenced by:  nsgacs  15717  0nsg  15726  nsgid  15727  ghmnsgima  15770  ghmnsgpreima  15771  cntrsubgnsg  15858  clsnsg  19680
  Copyright terms: Public domain W3C validator