Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0fsum Structured version   Visualization version   GIF version

Theorem sge0fsum 39280
Description: The arbitrary sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +∞ (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0fsum.x (𝜑𝑋 ∈ Fin)
sge0fsum.f (𝜑𝐹:𝑋⟶(0[,)+∞))
Assertion
Ref Expression
sge0fsum (𝜑 → (Σ^𝐹) = Σ𝑥𝑋 (𝐹𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝜑,𝑥

Proof of Theorem sge0fsum
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0fsum.x . . 3 (𝜑𝑋 ∈ Fin)
2 sge0fsum.f . . . 4 (𝜑𝐹:𝑋⟶(0[,)+∞))
32fge0icoicc 39258 . . 3 (𝜑𝐹:𝑋⟶(0[,]+∞))
41, 3sge0xrcl 39278 . 2 (𝜑 → (Σ^𝐹) ∈ ℝ*)
5 rge0ssre 12151 . . . . 5 (0[,)+∞) ⊆ ℝ
62ffvelrnda 6267 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ (0[,)+∞))
75, 6sseldi 3566 . . . 4 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
81, 7fsumrecl 14312 . . 3 (𝜑 → Σ𝑥𝑋 (𝐹𝑥) ∈ ℝ)
98rexrd 9968 . 2 (𝜑 → Σ𝑥𝑋 (𝐹𝑥) ∈ ℝ*)
101, 2sge0reval 39265 . . 3 (𝜑 → (Σ^𝐹) = sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ))
11 simpr 476 . . . . . . 7 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → 𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)))
12 vex 3176 . . . . . . . . 9 𝑤 ∈ V
1312a1i 11 . . . . . . . 8 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → 𝑤 ∈ V)
14 eqid 2610 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) = (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))
1514elrnmpt 5293 . . . . . . . 8 (𝑤 ∈ V → (𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥)))
1613, 15syl 17 . . . . . . 7 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → (𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ↔ ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥)))
1711, 16mpbid 221 . . . . . 6 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → ∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥))
18 simp3 1056 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑥𝑦 (𝐹𝑥)) → 𝑤 = Σ𝑥𝑦 (𝐹𝑥))
191adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑋 ∈ Fin)
202fge0npnf 39260 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ +∞ ∈ ran 𝐹)
213, 20fge0iccre 39267 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑋⟶ℝ)
2221adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶ℝ)
2322adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 𝐹:𝑋⟶ℝ)
24 simpr 476 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 𝑥𝑋)
2523, 24ffvelrnd 6268 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
26 0xr 9965 . . . . . . . . . . . . . 14 0 ∈ ℝ*
2726a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 0 ∈ ℝ*)
28 pnfxr 9971 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
2928a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → +∞ ∈ ℝ*)
303adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
3130ffvelrnda 6267 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ (0[,]+∞))
32 iccgelb 12101 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑥) ∈ (0[,]+∞)) → 0 ≤ (𝐹𝑥))
3327, 29, 31, 32syl3anc 1318 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑋) → 0 ≤ (𝐹𝑥))
34 elinel1 3761 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ∈ 𝒫 𝑋)
35 elpwi 4117 . . . . . . . . . . . . . 14 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
3634, 35syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦𝑋)
3736adantl 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦𝑋)
3819, 25, 33, 37fsumless 14369 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 (𝐹𝑥) ≤ Σ𝑥𝑋 (𝐹𝑥))
39383adant3 1074 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑥𝑦 (𝐹𝑥)) → Σ𝑥𝑦 (𝐹𝑥) ≤ Σ𝑥𝑋 (𝐹𝑥))
4018, 39eqbrtrd 4605 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑥𝑦 (𝐹𝑥)) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))
41403exp 1256 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → (𝑤 = Σ𝑥𝑦 (𝐹𝑥) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))))
4241rexlimdv 3012 . . . . . . 7 (𝜑 → (∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
4342adantr 480 . . . . . 6 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → (∃𝑦 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑥𝑦 (𝐹𝑥) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
4417, 43mpd 15 . . . . 5 ((𝜑𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))) → 𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))
4544ralrimiva 2949 . . . 4 (𝜑 → ∀𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥))
46 elinel2 3762 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝑋 ∩ Fin) → 𝑦 ∈ Fin)
4746adantl 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑦 ∈ Fin)
4822adantr 480 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → 𝐹:𝑋⟶ℝ)
4937sselda 3568 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝑋)
5048, 49ffvelrnd 6268 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑥𝑦) → (𝐹𝑥) ∈ ℝ)
5147, 50fsumrecl 14312 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ)
5251rexrd 9968 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ*)
5352ralrimiva 2949 . . . . . 6 (𝜑 → ∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ*)
5414rnmptss 6299 . . . . . 6 (∀𝑦 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑥𝑦 (𝐹𝑥) ∈ ℝ* → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ⊆ ℝ*)
5553, 54syl 17 . . . . 5 (𝜑 → ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ⊆ ℝ*)
56 supxrleub 12028 . . . . 5 ((ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)) ⊆ ℝ* ∧ Σ𝑥𝑋 (𝐹𝑥) ∈ ℝ*) → (sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ) ≤ Σ𝑥𝑋 (𝐹𝑥) ↔ ∀𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
5755, 9, 56syl2anc 691 . . . 4 (𝜑 → (sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ) ≤ Σ𝑥𝑋 (𝐹𝑥) ↔ ∀𝑤 ∈ ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥))𝑤 ≤ Σ𝑥𝑋 (𝐹𝑥)))
5845, 57mpbird 246 . . 3 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑥𝑦 (𝐹𝑥)), ℝ*, < ) ≤ Σ𝑥𝑋 (𝐹𝑥))
5910, 58eqbrtrd 4605 . 2 (𝜑 → (Σ^𝐹) ≤ Σ𝑥𝑋 (𝐹𝑥))
60 ssid 3587 . . . 4 𝑋𝑋
6160a1i 11 . . 3 (𝜑𝑋𝑋)
621, 2, 61, 1fsumlesge0 39270 . 2 (𝜑 → Σ𝑥𝑋 (𝐹𝑥) ≤ (Σ^𝐹))
634, 9, 59, 62xrletrid 11862 1 (𝜑 → (Σ^𝐹) = Σ𝑥𝑋 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  supcsup 8229  cr 9814  0cc0 9815  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  [,)cico 12048  [,]cicc 12049  Σcsu 14264  Σ^csumge0 39255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-sumge0 39256
This theorem is referenced by:  sge0fsummpt  39283  sge0sup  39284  sge0ltfirp  39293  sge0le  39300  sge0iunmptlemfi  39306  sge0ltfirpmpt2  39319  sge0fsummptf  39329  omeiunltfirp  39409
  Copyright terms: Public domain W3C validator