Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0ltfirp Structured version   Visualization version   GIF version

Theorem sge0ltfirp 39293
 Description: If the sum of nonnegative extended reals is real, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0ltfirp.x (𝜑𝑋𝑉)
sge0ltfirp.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0ltfirp.y (𝜑𝑌 ∈ ℝ+)
sge0ltfirp.re (𝜑 → (Σ^𝐹) ∈ ℝ)
Assertion
Ref Expression
sge0ltfirp (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0ltfirp
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0ltfirp.f . . . . 5 (𝜑𝐹:𝑋⟶(0[,]+∞))
2 sge0ltfirp.x . . . . . 6 (𝜑𝑋𝑉)
3 sge0ltfirp.re . . . . . 6 (𝜑 → (Σ^𝐹) ∈ ℝ)
42, 1, 3sge0rern 39281 . . . . 5 (𝜑 → ¬ +∞ ∈ ran 𝐹)
51, 4fge0iccico 39263 . . . 4 (𝜑𝐹:𝑋⟶(0[,)+∞))
65sge0rnre 39257 . . 3 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
7 sge0rnn0 39261 . . . 4 ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ≠ ∅
87a1i 11 . . 3 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ≠ ∅)
92, 1, 3sge0rnbnd 39286 . . 3 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤𝑧)
10 sge0ltfirp.y . . 3 (𝜑𝑌 ∈ ℝ+)
116, 8, 9, 10suprltrp 38485 . 2 (𝜑 → ∃𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤)
12 nfv 1830 . . 3 𝑤𝜑
13 nfv 1830 . . 3 𝑤𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌)
14 simp1 1054 . . . . 5 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → 𝜑)
15 vex 3176 . . . . . . . . . 10 𝑤 ∈ V
16 eqid 2610 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
1716elrnmpt 5293 . . . . . . . . . 10 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦)))
1815, 17ax-mp 5 . . . . . . . . 9 (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦))
1918biimpi 205 . . . . . . . 8 (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦))
2019adantr 480 . . . . . . 7 ((𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦))
21 nfmpt1 4675 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
2221nfrn 5289 . . . . . . . . . . . 12 𝑥ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
23 nfcv 2751 . . . . . . . . . . . 12 𝑥
24 nfcv 2751 . . . . . . . . . . . 12 𝑥 <
2522, 23, 24nfsup 8240 . . . . . . . . . . 11 𝑥sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < )
26 nfcv 2751 . . . . . . . . . . 11 𝑥
27 nfcv 2751 . . . . . . . . . . 11 𝑥𝑌
2825, 26, 27nfov 6575 . . . . . . . . . 10 𝑥(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌)
29 nfcv 2751 . . . . . . . . . 10 𝑥𝑤
3028, 24, 29nfbr 4629 . . . . . . . . 9 𝑥(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤
31 simpl 472 . . . . . . . . . . . 12 (((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤)
32 simpr 476 . . . . . . . . . . . 12 (((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑤 = Σ𝑦𝑥 (𝐹𝑦))
3331, 32breqtrd 4609 . . . . . . . . . . 11 (((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
3433ex 449 . . . . . . . . . 10 ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → (𝑤 = Σ𝑦𝑥 (𝐹𝑦) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)))
3534a1d 25 . . . . . . . . 9 ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑤 = Σ𝑦𝑥 (𝐹𝑦) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))))
3630, 35reximdai 2995 . . . . . . . 8 ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)))
3736adantl 481 . . . . . . 7 ((𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)))
3820, 37mpd 15 . . . . . 6 ((𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
39383adant1 1072 . . . . 5 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
40 simpl 472 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)))
412, 1, 3sge0supre 39282 . . . . . . . . . . . . 13 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ))
4241oveq1d 6564 . . . . . . . . . . . 12 (𝜑 → ((Σ^𝐹) − 𝑌) = (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌))
4342adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ((Σ^𝐹) − 𝑌) = (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌))
44 simpr 476 . . . . . . . . . . 11 ((𝜑 ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
4543, 44eqbrtrd 4605 . . . . . . . . . 10 ((𝜑 ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
4645adantlr 747 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
47 simpr 476 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦))
483adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^𝐹) ∈ ℝ)
4910rpred 11748 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ℝ)
5049adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑌 ∈ ℝ)
51 elinel2 3762 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin)
5251adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin)
53 rge0ssre 12151 . . . . . . . . . . . . . . 15 (0[,)+∞) ⊆ ℝ
545adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,)+∞))
5554adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝐹:𝑋⟶(0[,)+∞))
56 elpwinss 38241 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
5756adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
5857sselda 3568 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑋)
5955, 58ffvelrnd 6268 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,)+∞))
6053, 59sseldi 3566 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℝ)
6152, 60fsumrecl 14312 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ)
6248, 50, 61ltsubaddd 10502 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦) ↔ (Σ^𝐹) < (Σ𝑦𝑥 (𝐹𝑦) + 𝑌)))
6362adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦) ↔ (Σ^𝐹) < (Σ𝑦𝑥 (𝐹𝑦) + 𝑌)))
6447, 63mpbid 221 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (Σ^𝐹) < (Σ𝑦𝑥 (𝐹𝑦) + 𝑌))
6554, 57fssresd 5984 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,)+∞))
6652, 65sge0fsum 39280 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) = Σ𝑦𝑥 ((𝐹𝑥)‘𝑦))
67 fvres 6117 . . . . . . . . . . . . . . 15 (𝑦𝑥 → ((𝐹𝑥)‘𝑦) = (𝐹𝑦))
6867sumeq2i 14277 . . . . . . . . . . . . . 14 Σ𝑦𝑥 ((𝐹𝑥)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦)
6968a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 ((𝐹𝑥)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦))
7066, 69eqtr2d 2645 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) = (Σ^‘(𝐹𝑥)))
7170oveq1d 6564 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ𝑦𝑥 (𝐹𝑦) + 𝑌) = ((Σ^‘(𝐹𝑥)) + 𝑌))
7271adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (Σ𝑦𝑥 (𝐹𝑦) + 𝑌) = ((Σ^‘(𝐹𝑥)) + 𝑌))
7364, 72breqtrd 4609 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ ((Σ^𝐹) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
7440, 46, 73syl2anc 691 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → (Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
7574ex 449 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦) → (Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌)))
7675reximdva 3000 . . . . . 6 (𝜑 → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌)))
7776imp 444 . . . . 5 ((𝜑 ∧ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < Σ𝑦𝑥 (𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
7814, 39, 77syl2anc 691 . . . 4 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
79783exp 1256 . . 3 (𝜑 → (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → ((sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))))
8012, 13, 79rexlimd 3008 . 2 (𝜑 → (∃𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))(sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ) − 𝑌) < 𝑤 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌)))
8111, 80mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^𝐹) < ((Σ^‘(𝐹𝑥)) + 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108   class class class wbr 4583   ↦ cmpt 4643  ran crn 5039   ↾ cres 5040  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  supcsup 8229  ℝcr 9814  0cc0 9815   + caddc 9818  +∞cpnf 9950   < clt 9953   − cmin 10145  ℝ+crp 11708  [,)cico 12048  [,]cicc 12049  Σcsu 14264  Σ^csumge0 39255 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-sumge0 39256 This theorem is referenced by:  sge0ltfirpmpt  39301  sge0ltfirpmpt2  39319
 Copyright terms: Public domain W3C validator