Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0sup Structured version   Visualization version   GIF version

Theorem sge0sup 39284
Description: The arbitrary sum of nonnegative extended reals is the supremum of finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0sup.x (𝜑𝑋𝑉)
sge0sup.f (𝜑𝐹:𝑋⟶(0[,]+∞))
Assertion
Ref Expression
sge0sup (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0sup
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2611 . . 3 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ = +∞)
2 sge0sup.x . . . . 5 (𝜑𝑋𝑉)
32adantr 480 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋𝑉)
4 sge0sup.f . . . . 5 (𝜑𝐹:𝑋⟶(0[,]+∞))
54adantr 480 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
6 simpr 476 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹)
73, 5, 6sge0pnfval 39266 . . 3 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) = +∞)
8 vex 3176 . . . . . . . . 9 𝑥 ∈ V
98a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ V)
104adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
11 elinel1 3761 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ 𝒫 𝑋)
12 elpwi 4117 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
1311, 12syl 17 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
1413adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
1510, 14fssresd 5984 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,]+∞))
169, 15sge0xrcl 39278 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ∈ ℝ*)
1716adantlr 747 . . . . . 6 (((𝜑 ∧ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ∈ ℝ*)
1817ralrimiva 2949 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ*)
19 eqid 2610 . . . . . 6 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
2019rnmptss 6299 . . . . 5 (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
2118, 20syl 17 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
22 ffn 5958 . . . . . . . . 9 (𝐹:𝑋⟶(0[,]+∞) → 𝐹 Fn 𝑋)
234, 22syl 17 . . . . . . . 8 (𝜑𝐹 Fn 𝑋)
24 fvelrnb 6153 . . . . . . . 8 (𝐹 Fn 𝑋 → (+∞ ∈ ran 𝐹 ↔ ∃𝑦𝑋 (𝐹𝑦) = +∞))
2523, 24syl 17 . . . . . . 7 (𝜑 → (+∞ ∈ ran 𝐹 ↔ ∃𝑦𝑋 (𝐹𝑦) = +∞))
2625adantr 480 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (+∞ ∈ ran 𝐹 ↔ ∃𝑦𝑋 (𝐹𝑦) = +∞))
276, 26mpbid 221 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ∃𝑦𝑋 (𝐹𝑦) = +∞)
28 snelpwi 4839 . . . . . . . . . . . 12 (𝑦𝑋 → {𝑦} ∈ 𝒫 𝑋)
29 snfi 7923 . . . . . . . . . . . . 13 {𝑦} ∈ Fin
3029a1i 11 . . . . . . . . . . . 12 (𝑦𝑋 → {𝑦} ∈ Fin)
3128, 30elind 3760 . . . . . . . . . . 11 (𝑦𝑋 → {𝑦} ∈ (𝒫 𝑋 ∩ Fin))
32313ad2ant2 1076 . . . . . . . . . 10 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → {𝑦} ∈ (𝒫 𝑋 ∩ Fin))
33 simp2 1055 . . . . . . . . . . . 12 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → 𝑦𝑋)
3443ad2ant1 1075 . . . . . . . . . . . . 13 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → 𝐹:𝑋⟶(0[,]+∞))
3533snssd 4281 . . . . . . . . . . . . 13 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → {𝑦} ⊆ 𝑋)
3634, 35fssresd 5984 . . . . . . . . . . . 12 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (𝐹 ↾ {𝑦}):{𝑦}⟶(0[,]+∞))
3733, 36sge0sn 39272 . . . . . . . . . . 11 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (Σ^‘(𝐹 ↾ {𝑦})) = ((𝐹 ↾ {𝑦})‘𝑦))
38 vsnid 4156 . . . . . . . . . . . . 13 𝑦 ∈ {𝑦}
39 fvres 6117 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑦} → ((𝐹 ↾ {𝑦})‘𝑦) = (𝐹𝑦))
4038, 39ax-mp 5 . . . . . . . . . . . 12 ((𝐹 ↾ {𝑦})‘𝑦) = (𝐹𝑦)
4140a1i 11 . . . . . . . . . . 11 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → ((𝐹 ↾ {𝑦})‘𝑦) = (𝐹𝑦))
42 simp3 1056 . . . . . . . . . . 11 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (𝐹𝑦) = +∞)
4337, 41, 423eqtrrd 2649 . . . . . . . . . 10 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → +∞ = (Σ^‘(𝐹 ↾ {𝑦})))
44 reseq2 5312 . . . . . . . . . . . . 13 (𝑥 = {𝑦} → (𝐹𝑥) = (𝐹 ↾ {𝑦}))
4544fveq2d 6107 . . . . . . . . . . . 12 (𝑥 = {𝑦} → (Σ^‘(𝐹𝑥)) = (Σ^‘(𝐹 ↾ {𝑦})))
4645eqeq2d 2620 . . . . . . . . . . 11 (𝑥 = {𝑦} → (+∞ = (Σ^‘(𝐹𝑥)) ↔ +∞ = (Σ^‘(𝐹 ↾ {𝑦}))))
4746rspcev 3282 . . . . . . . . . 10 (({𝑦} ∈ (𝒫 𝑋 ∩ Fin) ∧ +∞ = (Σ^‘(𝐹 ↾ {𝑦}))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)+∞ = (Σ^‘(𝐹𝑥)))
4832, 43, 47syl2anc 691 . . . . . . . . 9 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)+∞ = (Σ^‘(𝐹𝑥)))
49 pnfex 9972 . . . . . . . . . 10 +∞ ∈ V
5049a1i 11 . . . . . . . . 9 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → +∞ ∈ V)
5119, 48, 50elrnmptd 38361 . . . . . . . 8 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))))
52513exp 1256 . . . . . . 7 (𝜑 → (𝑦𝑋 → ((𝐹𝑦) = +∞ → +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))))))
5352rexlimdv 3012 . . . . . 6 (𝜑 → (∃𝑦𝑋 (𝐹𝑦) = +∞ → +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))))
5453adantr 480 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (∃𝑦𝑋 (𝐹𝑦) = +∞ → +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))))
5527, 54mpd 15 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))))
56 supxrpnf 12020 . . . 4 ((ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ* ∧ +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = +∞)
5721, 55, 56syl2anc 691 . . 3 ((𝜑 ∧ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = +∞)
581, 7, 573eqtr4d 2654 . 2 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
592adantr 480 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝑋𝑉)
604adantr 480 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
61 simpr 476 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ ran 𝐹)
6260, 61fge0iccico 39263 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,)+∞))
6359, 62sge0reval 39265 . . 3 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
64 elinel2 3762 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin)
6564adantl 481 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin)
6615adantlr 747 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,]+∞))
67 nelrnres 38369 . . . . . . . . . 10 (¬ +∞ ∈ ran 𝐹 → ¬ +∞ ∈ ran (𝐹𝑥))
6867ad2antlr 759 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ¬ +∞ ∈ ran (𝐹𝑥))
6966, 68fge0iccico 39263 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,)+∞))
7065, 69sge0fsum 39280 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) = Σ𝑦𝑥 ((𝐹𝑥)‘𝑦))
71 simpr 476 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑥)
72 fvres 6117 . . . . . . . . . 10 (𝑦𝑥 → ((𝐹𝑥)‘𝑦) = (𝐹𝑦))
7371, 72syl 17 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → ((𝐹𝑥)‘𝑦) = (𝐹𝑦))
7473sumeq2dv 14281 . . . . . . . 8 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → Σ𝑦𝑥 ((𝐹𝑥)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦))
7574adantl 481 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 ((𝐹𝑥)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦))
7670, 75eqtrd 2644 . . . . . 6 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) = Σ𝑦𝑥 (𝐹𝑦))
7776mpteq2dva 4672 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
7877rneqd 5274 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) = ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
7978supeq1d 8235 . . 3 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
8063, 79eqtr4d 2647 . 2 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
8158, 80pm2.61dan 828 1 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108  {csn 4125  cmpt 4643  ran crn 5039  cres 5040   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  supcsup 8229  0cc0 9815  +∞cpnf 9950  *cxr 9952   < clt 9953  [,]cicc 12049  Σcsu 14264  Σ^csumge0 39255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-sumge0 39256
This theorem is referenced by:  sge0gerp  39288  sge0pnffigt  39289  sge0lefi  39291
  Copyright terms: Public domain W3C validator