Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcprmpw2 Structured version   Visualization version   GIF version

Theorem pcprmpw2 15424
 Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
pcprmpw2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))))
Distinct variable groups:   𝐴,𝑛   𝑃,𝑛

Proof of Theorem pcprmpw2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simplr 788 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∈ ℕ)
21nnnn0d 11228 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∈ ℕ0)
3 prmnn 15226 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
43ad2antrr 758 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝑃 ∈ ℕ)
5 pccl 15392 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃 pCnt 𝐴) ∈ ℕ0)
65adantr 480 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ∈ ℕ0)
74, 6nnexpcld 12892 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
87nnnn0d 11228 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ0)
96nn0red 11229 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ∈ ℝ)
109leidd 10473 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐴))
11 simpll 786 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝑃 ∈ ℙ)
126nn0zd 11356 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ∈ ℤ)
13 pcid 15415 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑃 pCnt 𝐴) ∈ ℤ) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))) = (𝑃 pCnt 𝐴))
1411, 12, 13syl2anc 691 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))) = (𝑃 pCnt 𝐴))
1510, 14breqtrrd 4611 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
1615ad2antrr 758 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
17 simpr 476 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃)
1817oveq1d 6564 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt 𝐴) = (𝑃 pCnt 𝐴))
1917oveq1d 6564 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))) = (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
2016, 18, 193brtr4d 4615 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
21 simplrr 797 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝐴 ∥ (𝑃𝑛))
22 prmz 15227 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
2322adantl 481 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
241adantr 480 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
2524nnzd 11357 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
26 simprl 790 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝑛 ∈ ℕ0)
274, 26nnexpcld 12892 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃𝑛) ∈ ℕ)
2827adantr 480 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑃𝑛) ∈ ℕ)
2928nnzd 11357 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑃𝑛) ∈ ℤ)
30 dvdstr 14856 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝑃𝑛) ∈ ℤ) → ((𝑝𝐴𝐴 ∥ (𝑃𝑛)) → 𝑝 ∥ (𝑃𝑛)))
3123, 25, 29, 30syl3anc 1318 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴𝐴 ∥ (𝑃𝑛)) → 𝑝 ∥ (𝑃𝑛)))
3221, 31mpan2d 706 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝𝐴𝑝 ∥ (𝑃𝑛)))
33 simpr 476 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
3411adantr 480 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ ℙ)
35 simplrl 796 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ ℕ0)
36 prmdvdsexpr 15267 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → (𝑝 ∥ (𝑃𝑛) → 𝑝 = 𝑃))
3733, 34, 35, 36syl3anc 1318 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃𝑛) → 𝑝 = 𝑃))
3832, 37syld 46 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝𝐴𝑝 = 𝑃))
3938necon3ad 2795 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝𝑃 → ¬ 𝑝𝐴))
4039imp 444 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → ¬ 𝑝𝐴)
41 simplr 788 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 𝑝 ∈ ℙ)
421ad2antrr 758 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 𝐴 ∈ ℕ)
43 pceq0 15413 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝 pCnt 𝐴) = 0 ↔ ¬ 𝑝𝐴))
4441, 42, 43syl2anc 691 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → ((𝑝 pCnt 𝐴) = 0 ↔ ¬ 𝑝𝐴))
4540, 44mpbird 246 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt 𝐴) = 0)
467ad2antrr 758 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
4741, 46pccld 15393 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ0)
4847nn0ge0d 11231 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 0 ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
4945, 48eqbrtrd 4605 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
5020, 49pm2.61dane 2869 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
5150ralrimiva 2949 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
521nnzd 11357 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∈ ℤ)
537nnzd 11357 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ)
54 pc2dvds 15421 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ) → (𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴)))))
5552, 53, 54syl2anc 691 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴)))))
5651, 55mpbird 246 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)))
57 pcdvds 15406 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
5857adantr 480 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
59 dvdseq 14874 . . . 4 (((𝐴 ∈ ℕ0 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ0) ∧ (𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)) ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))
602, 8, 56, 58, 59syl22anc 1319 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))
6160rexlimdvaa 3014 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))))
623adantr 480 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → 𝑃 ∈ ℕ)
6362, 5nnexpcld 12892 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
6463nnzd 11357 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ)
65 iddvds 14833 . . . . 5 ((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴)))
6664, 65syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴)))
67 oveq2 6557 . . . . . 6 (𝑛 = (𝑃 pCnt 𝐴) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt 𝐴)))
6867breq2d 4595 . . . . 5 (𝑛 = (𝑃 pCnt 𝐴) → ((𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴))))
6968rspcev 3282 . . . 4 (((𝑃 pCnt 𝐴) ∈ ℕ0 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴))) → ∃𝑛 ∈ ℕ0 (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛))
705, 66, 69syl2anc 691 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ0 (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛))
71 breq1 4586 . . . 4 (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → (𝐴 ∥ (𝑃𝑛) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛)))
7271rexbidv 3034 . . 3 (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛)))
7370, 72syl5ibrcom 236 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → ∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛)))
7461, 73impbid 201 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   class class class wbr 4583  (class class class)co 6549  0cc0 9815   ≤ cle 9954  ℕcn 10897  ℕ0cn0 11169  ℤcz 11254  ↑cexp 12722   ∥ cdvds 14821  ℙcprime 15223   pCnt cpc 15379 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-fz 12198  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380 This theorem is referenced by:  pcprmpw  15425  dvdsprmpweq  15426  pgpfi1  17833  pgpfi  17843  sylow2alem2  17856  lt6abl  18119  pgpfac1lem3a  18298  dvdsppwf1o  24712
 Copyright terms: Public domain W3C validator