Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pccld | Structured version Visualization version GIF version |
Description: Closure of the prime power function. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
pccld.1 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
pccld.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
pccld | ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pccld.1 | . 2 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
2 | pccld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | pccl 15392 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 pCnt 𝑁) ∈ ℕ0) | |
4 | 1, 2, 3 | syl2anc 691 | 1 ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1977 (class class class)co 6549 ℕcn 10897 ℕ0cn0 11169 ℙcprime 15223 pCnt cpc 15379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-q 11665 df-rp 11709 df-fl 12455 df-mod 12531 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-dvds 14822 df-gcd 15055 df-prm 15224 df-pc 15380 |
This theorem is referenced by: pcqmul 15396 pcidlem 15414 pcgcd1 15419 pc2dvds 15421 pcz 15423 pcprmpw2 15424 dvdsprmpweq 15426 pcadd 15431 pcmpt 15434 pcfac 15441 oddprmdvds 15445 pockthg 15448 prmreclem2 15459 sylow1lem1 17836 sylow1lem3 17838 sylow1lem5 17840 pgpfi 17843 slwhash 17862 fislw 17863 gexexlem 18078 ablfac1lem 18290 ablfac1b 18292 ablfac1c 18293 ablfac1eu 18295 pgpfac1lem2 18297 pgpfac1lem3a 18298 ablfaclem3 18309 mumullem2 24706 chtublem 24736 pclogsum 24740 bposlem1 24809 bposlem3 24811 chebbnd1lem1 24958 dchrisum0flblem1 24997 dchrisum0flblem2 24998 |
Copyright terms: Public domain | W3C validator |