MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcprmpw2 Structured version   Unicode version

Theorem pcprmpw2 14267
Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
pcprmpw2  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  <->  A  =  ( P ^ ( P 
pCnt  A ) ) ) )
Distinct variable groups:    A, n    P, n

Proof of Theorem pcprmpw2
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 simplr 754 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  e.  NN )
21nnnn0d 10853 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  e.  NN0 )
3 prmnn 14082 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
43ad2antrr 725 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  P  e.  NN )
5 pccl 14235 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P  pCnt  A )  e. 
NN0 )
65adantr 465 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  e.  NN0 )
74, 6nnexpcld 12300 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
87nnnn0d 10853 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  e.  NN0 )
96nn0red 10854 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  e.  RR )
109leidd 10120 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  A ) )
11 simpll 753 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  P  e.  Prime )
126nn0zd 10965 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  e.  ZZ )
13 pcid 14258 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( P  pCnt  A )  e.  ZZ )  ->  ( P  pCnt  ( P ^
( P  pCnt  A
) ) )  =  ( P  pCnt  A
) )
1411, 12, 13syl2anc 661 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  ( P ^ ( P  pCnt  A ) ) )  =  ( P 
pCnt  A ) )
1510, 14breqtrrd 4473 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( P ^
( P  pCnt  A
) ) ) )
1615ad2antrr 725 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( P ^
( P  pCnt  A
) ) ) )
17 simpr 461 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  p  =  P )
1817oveq1d 6300 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( p  pCnt  A )  =  ( P  pCnt  A )
)
1917oveq1d 6300 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) )  =  ( P 
pCnt  ( P ^
( P  pCnt  A
) ) ) )
2016, 18, 193brtr4d 4477 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( p  pCnt  A )  <_  (
p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
21 simplrr 760 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  A  ||  ( P ^ n ) )
22 prmz 14083 . . . . . . . . . . . . . . 15  |-  ( p  e.  Prime  ->  p  e.  ZZ )
2322adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  p  e.  ZZ )
241adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  A  e.  NN )
2524nnzd 10966 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  A  e.  ZZ )
26 simprl 755 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  n  e.  NN0 )
274, 26nnexpcld 12300 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ n )  e.  NN )
2827adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( P ^ n )  e.  NN )
2928nnzd 10966 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( P ^ n )  e.  ZZ )
30 dvdstr 13881 . . . . . . . . . . . . . 14  |-  ( ( p  e.  ZZ  /\  A  e.  ZZ  /\  ( P ^ n )  e.  ZZ )  ->  (
( p  ||  A  /\  A  ||  ( P ^ n ) )  ->  p  ||  ( P ^ n ) ) )
3123, 25, 29, 30syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( ( p  ||  A  /\  A  ||  ( P ^
n ) )  ->  p  ||  ( P ^
n ) ) )
3221, 31mpan2d 674 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
||  A  ->  p  ||  ( P ^ n
) ) )
33 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  p  e. 
Prime )
3411adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  P  e. 
Prime )
35 simplrl 759 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  n  e. 
NN0 )
36 prmdvdsexpr 14119 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  P  e.  Prime  /\  n  e.  NN0 )  ->  ( p  ||  ( P ^ n
)  ->  p  =  P ) )
3733, 34, 35, 36syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
||  ( P ^
n )  ->  p  =  P ) )
3832, 37syld 44 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
||  A  ->  p  =  P ) )
3938necon3ad 2677 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p  =/=  P  ->  -.  p  ||  A ) )
4039imp 429 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  -.  p  ||  A )
41 simplr 754 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  p  e.  Prime )
421ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  A  e.  NN )
43 pceq0 14256 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
( p  pCnt  A
)  =  0  <->  -.  p  ||  A ) )
4441, 42, 43syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( (
p  pCnt  A )  =  0  <->  -.  p  ||  A ) )
4540, 44mpbird 232 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( p  pCnt  A )  =  0 )
467ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
4741, 46pccld 14236 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) )  e.  NN0 )
4847nn0ge0d 10856 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  0  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
4945, 48eqbrtrd 4467 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( p  pCnt  A )  <_  (
p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
5020, 49pm2.61dane 2785 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
pCnt  A )  <_  (
p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
5150ralrimiva 2878 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
521nnzd 10966 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  e.  ZZ )
537nnzd 10966 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  e.  ZZ )
54 pc2dvds 14264 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( P ^ ( P 
pCnt  A ) )  e.  ZZ )  ->  ( A  ||  ( P ^
( P  pCnt  A
) )  <->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) ) )
5552, 53, 54syl2anc 661 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( A  ||  ( P ^ ( P  pCnt  A ) )  <->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) ) )
5651, 55mpbird 232 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  ||  ( P ^ ( P  pCnt  A ) ) )
57 pcdvds 14249 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  ||  A
)
5857adantr 465 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  ||  A
)
59 dvdseq 13895 . . . 4  |-  ( ( ( A  e.  NN0  /\  ( P ^ ( P  pCnt  A ) )  e.  NN0 )  /\  ( A  ||  ( P ^ ( P  pCnt  A ) )  /\  ( P ^ ( P  pCnt  A ) )  ||  A
) )  ->  A  =  ( P ^
( P  pCnt  A
) ) )
602, 8, 56, 58, 59syl22anc 1229 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  =  ( P ^ ( P 
pCnt  A ) ) )
6160rexlimdvaa 2956 . 2  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  ->  A  =  ( P ^
( P  pCnt  A
) ) ) )
623adantr 465 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  P  e.  NN )
6362, 5nnexpcld 12300 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
6463nnzd 10966 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  e.  ZZ )
65 iddvds 13861 . . . . 5  |-  ( ( P ^ ( P 
pCnt  A ) )  e.  ZZ  ->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ ( P  pCnt  A ) ) )
6664, 65syl 16 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ ( P  pCnt  A ) ) )
67 oveq2 6293 . . . . . 6  |-  ( n  =  ( P  pCnt  A )  ->  ( P ^ n )  =  ( P ^ ( P  pCnt  A ) ) )
6867breq2d 4459 . . . . 5  |-  ( n  =  ( P  pCnt  A )  ->  ( ( P ^ ( P  pCnt  A ) )  ||  ( P ^ n )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ ( P  pCnt  A ) ) ) )
6968rspcev 3214 . . . 4  |-  ( ( ( P  pCnt  A
)  e.  NN0  /\  ( P ^ ( P 
pCnt  A ) )  ||  ( P ^ ( P 
pCnt  A ) ) )  ->  E. n  e.  NN0  ( P ^ ( P 
pCnt  A ) )  ||  ( P ^ n ) )
705, 66, 69syl2anc 661 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  E. n  e.  NN0  ( P ^
( P  pCnt  A
) )  ||  ( P ^ n ) )
71 breq1 4450 . . . 4  |-  ( A  =  ( P ^
( P  pCnt  A
) )  ->  ( A  ||  ( P ^
n )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ n ) ) )
7271rexbidv 2973 . . 3  |-  ( A  =  ( P ^
( P  pCnt  A
) )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  <->  E. n  e.  NN0  ( P ^
( P  pCnt  A
) )  ||  ( P ^ n ) ) )
7370, 72syl5ibrcom 222 . 2  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( A  =  ( P ^ ( P  pCnt  A ) )  ->  E. n  e.  NN0  A  ||  ( P ^ n ) ) )
7461, 73impbid 191 1  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  <->  A  =  ( P ^ ( P 
pCnt  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   class class class wbr 4447  (class class class)co 6285   0cc0 9493    <_ cle 9630   NNcn 10537   NN0cn0 10796   ZZcz 10865   ^cexp 12135    || cdivides 13850   Primecprime 14079    pCnt cpc 14222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570  ax-pre-sup 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-1o 7131  df-2o 7132  df-oadd 7135  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-sup 7902  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-n0 10797  df-z 10866  df-uz 11084  df-q 11184  df-rp 11222  df-fz 11674  df-fl 11898  df-mod 11966  df-seq 12077  df-exp 12136  df-cj 12898  df-re 12899  df-im 12900  df-sqrt 13034  df-abs 13035  df-dvds 13851  df-gcd 14007  df-prm 14080  df-pc 14223
This theorem is referenced by:  pcprmpw  14268  pgpfi1  16430  pgpfi  16440  sylow2alem2  16453  lt6abl  16712  pgpfac1lem3a  16941  dvdsppwf1o  23287
  Copyright terms: Public domain W3C validator