MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcprmpw2 Structured version   Visualization version   Unicode version

Theorem pcprmpw2 14910
Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
pcprmpw2  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  <->  A  =  ( P ^ ( P 
pCnt  A ) ) ) )
Distinct variable groups:    A, n    P, n

Proof of Theorem pcprmpw2
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 simplr 770 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  e.  NN )
21nnnn0d 10949 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  e.  NN0 )
3 prmnn 14704 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
43ad2antrr 740 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  P  e.  NN )
5 pccl 14878 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P  pCnt  A )  e. 
NN0 )
65adantr 472 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  e.  NN0 )
74, 6nnexpcld 12475 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
87nnnn0d 10949 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  e.  NN0 )
96nn0red 10950 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  e.  RR )
109leidd 10201 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  A ) )
11 simpll 768 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  P  e.  Prime )
126nn0zd 11061 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  e.  ZZ )
13 pcid 14901 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( P  pCnt  A )  e.  ZZ )  ->  ( P  pCnt  ( P ^
( P  pCnt  A
) ) )  =  ( P  pCnt  A
) )
1411, 12, 13syl2anc 673 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  ( P ^ ( P  pCnt  A ) ) )  =  ( P 
pCnt  A ) )
1510, 14breqtrrd 4422 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( P ^
( P  pCnt  A
) ) ) )
1615ad2antrr 740 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( P ^
( P  pCnt  A
) ) ) )
17 simpr 468 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  p  =  P )
1817oveq1d 6323 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( p  pCnt  A )  =  ( P  pCnt  A )
)
1917oveq1d 6323 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) )  =  ( P 
pCnt  ( P ^
( P  pCnt  A
) ) ) )
2016, 18, 193brtr4d 4426 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( p  pCnt  A )  <_  (
p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
21 simplrr 779 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  A  ||  ( P ^ n ) )
22 prmz 14705 . . . . . . . . . . . . . . 15  |-  ( p  e.  Prime  ->  p  e.  ZZ )
2322adantl 473 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  p  e.  ZZ )
241adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  A  e.  NN )
2524nnzd 11062 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  A  e.  ZZ )
26 simprl 772 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  n  e.  NN0 )
274, 26nnexpcld 12475 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ n )  e.  NN )
2827adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( P ^ n )  e.  NN )
2928nnzd 11062 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( P ^ n )  e.  ZZ )
30 dvdstr 14414 . . . . . . . . . . . . . 14  |-  ( ( p  e.  ZZ  /\  A  e.  ZZ  /\  ( P ^ n )  e.  ZZ )  ->  (
( p  ||  A  /\  A  ||  ( P ^ n ) )  ->  p  ||  ( P ^ n ) ) )
3123, 25, 29, 30syl3anc 1292 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( ( p  ||  A  /\  A  ||  ( P ^
n ) )  ->  p  ||  ( P ^
n ) ) )
3221, 31mpan2d 688 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
||  A  ->  p  ||  ( P ^ n
) ) )
33 simpr 468 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  p  e. 
Prime )
3411adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  P  e. 
Prime )
35 simplrl 778 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  n  e. 
NN0 )
36 prmdvdsexpr 14748 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  P  e.  Prime  /\  n  e.  NN0 )  ->  ( p  ||  ( P ^ n
)  ->  p  =  P ) )
3733, 34, 35, 36syl3anc 1292 . . . . . . . . . . . 12  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
||  ( P ^
n )  ->  p  =  P ) )
3832, 37syld 44 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
||  A  ->  p  =  P ) )
3938necon3ad 2656 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p  =/=  P  ->  -.  p  ||  A ) )
4039imp 436 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  -.  p  ||  A )
41 simplr 770 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  p  e.  Prime )
421ad2antrr 740 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  A  e.  NN )
43 pceq0 14899 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
( p  pCnt  A
)  =  0  <->  -.  p  ||  A ) )
4441, 42, 43syl2anc 673 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( (
p  pCnt  A )  =  0  <->  -.  p  ||  A ) )
4540, 44mpbird 240 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( p  pCnt  A )  =  0 )
467ad2antrr 740 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
4741, 46pccld 14879 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) )  e.  NN0 )
4847nn0ge0d 10952 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  0  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
4945, 48eqbrtrd 4416 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  (
n  e.  NN0  /\  A  ||  ( P ^
n ) ) )  /\  p  e.  Prime )  /\  p  =/=  P
)  ->  ( p  pCnt  A )  <_  (
p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
5020, 49pm2.61dane 2730 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  /\  p  e. 
Prime )  ->  ( p 
pCnt  A )  <_  (
p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
5150ralrimiva 2809 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) )
521nnzd 11062 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  e.  ZZ )
537nnzd 11062 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  e.  ZZ )
54 pc2dvds 14907 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( P ^ ( P 
pCnt  A ) )  e.  ZZ )  ->  ( A  ||  ( P ^
( P  pCnt  A
) )  <->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) ) )
5552, 53, 54syl2anc 673 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( A  ||  ( P ^ ( P  pCnt  A ) )  <->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( P ^ ( P  pCnt  A ) ) ) ) )
5651, 55mpbird 240 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  ||  ( P ^ ( P  pCnt  A ) ) )
57 pcdvds 14892 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  ||  A
)
5857adantr 472 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  ( P ^ ( P  pCnt  A ) )  ||  A
)
59 dvdseq 14429 . . . 4  |-  ( ( ( A  e.  NN0  /\  ( P ^ ( P  pCnt  A ) )  e.  NN0 )  /\  ( A  ||  ( P ^ ( P  pCnt  A ) )  /\  ( P ^ ( P  pCnt  A ) )  ||  A
) )  ->  A  =  ( P ^
( P  pCnt  A
) ) )
602, 8, 56, 58, 59syl22anc 1293 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN )  /\  ( n  e. 
NN0  /\  A  ||  ( P ^ n ) ) )  ->  A  =  ( P ^ ( P 
pCnt  A ) ) )
6160rexlimdvaa 2872 . 2  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  ->  A  =  ( P ^
( P  pCnt  A
) ) ) )
623adantr 472 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  P  e.  NN )
6362, 5nnexpcld 12475 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
6463nnzd 11062 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  e.  ZZ )
65 iddvds 14393 . . . . 5  |-  ( ( P ^ ( P 
pCnt  A ) )  e.  ZZ  ->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ ( P  pCnt  A ) ) )
6664, 65syl 17 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ ( P  pCnt  A ) ) )
67 oveq2 6316 . . . . . 6  |-  ( n  =  ( P  pCnt  A )  ->  ( P ^ n )  =  ( P ^ ( P  pCnt  A ) ) )
6867breq2d 4407 . . . . 5  |-  ( n  =  ( P  pCnt  A )  ->  ( ( P ^ ( P  pCnt  A ) )  ||  ( P ^ n )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ ( P  pCnt  A ) ) ) )
6968rspcev 3136 . . . 4  |-  ( ( ( P  pCnt  A
)  e.  NN0  /\  ( P ^ ( P 
pCnt  A ) )  ||  ( P ^ ( P 
pCnt  A ) ) )  ->  E. n  e.  NN0  ( P ^ ( P 
pCnt  A ) )  ||  ( P ^ n ) )
705, 66, 69syl2anc 673 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  E. n  e.  NN0  ( P ^
( P  pCnt  A
) )  ||  ( P ^ n ) )
71 breq1 4398 . . . 4  |-  ( A  =  ( P ^
( P  pCnt  A
) )  ->  ( A  ||  ( P ^
n )  <->  ( P ^ ( P  pCnt  A ) )  ||  ( P ^ n ) ) )
7271rexbidv 2892 . . 3  |-  ( A  =  ( P ^
( P  pCnt  A
) )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  <->  E. n  e.  NN0  ( P ^
( P  pCnt  A
) )  ||  ( P ^ n ) ) )
7370, 72syl5ibrcom 230 . 2  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( A  =  ( P ^ ( P  pCnt  A ) )  ->  E. n  e.  NN0  A  ||  ( P ^ n ) ) )
7461, 73impbid 195 1  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A 
||  ( P ^
n )  <->  A  =  ( P ^ ( P 
pCnt  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   class class class wbr 4395  (class class class)co 6308   0cc0 9557    <_ cle 9694   NNcn 10631   NN0cn0 10893   ZZcz 10961   ^cexp 12310    || cdvds 14382   Primecprime 14701    pCnt cpc 14865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-fz 11811  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-dvds 14383  df-gcd 14548  df-prm 14702  df-pc 14866
This theorem is referenced by:  pcprmpw  14911  pgpfi1  17325  pgpfi  17335  sylow2alem2  17348  lt6abl  17607  pgpfac1lem3a  17787  dvdsppwf1o  24194
  Copyright terms: Public domain W3C validator