Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mon1psubm Structured version   Visualization version   GIF version

Theorem mon1psubm 36803
Description: Monic polynomials are a multiplicative submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
mon1psubm.p 𝑃 = (Poly1𝑅)
mon1psubm.m 𝑀 = (Monic1p𝑅)
mon1psubm.u 𝑈 = (mulGrp‘𝑃)
Assertion
Ref Expression
mon1psubm (𝑅 ∈ NzRing → 𝑀 ∈ (SubMnd‘𝑈))

Proof of Theorem mon1psubm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mon1psubm.p . . . . 5 𝑃 = (Poly1𝑅)
2 eqid 2610 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
3 mon1psubm.m . . . . 5 𝑀 = (Monic1p𝑅)
41, 2, 3mon1pcl 23708 . . . 4 (𝑥𝑀𝑥 ∈ (Base‘𝑃))
54ssriv 3572 . . 3 𝑀 ⊆ (Base‘𝑃)
65a1i 11 . 2 (𝑅 ∈ NzRing → 𝑀 ⊆ (Base‘𝑃))
7 eqid 2610 . . . 4 (1r𝑃) = (1r𝑃)
8 eqid 2610 . . . 4 ( deg1𝑅) = ( deg1𝑅)
91, 7, 3, 8mon1pid 36802 . . 3 (𝑅 ∈ NzRing → ((1r𝑃) ∈ 𝑀 ∧ (( deg1𝑅)‘(1r𝑃)) = 0))
109simpld 474 . 2 (𝑅 ∈ NzRing → (1r𝑃) ∈ 𝑀)
111ply1nz 23685 . . . . . . 7 (𝑅 ∈ NzRing → 𝑃 ∈ NzRing)
12 nzrring 19082 . . . . . . 7 (𝑃 ∈ NzRing → 𝑃 ∈ Ring)
1311, 12syl 17 . . . . . 6 (𝑅 ∈ NzRing → 𝑃 ∈ Ring)
1413adantr 480 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑃 ∈ Ring)
154ad2antrl 760 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑥 ∈ (Base‘𝑃))
16 simprr 792 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑦𝑀)
175, 16sseldi 3566 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑦 ∈ (Base‘𝑃))
18 eqid 2610 . . . . . 6 (.r𝑃) = (.r𝑃)
192, 18ringcl 18384 . . . . 5 ((𝑃 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃)) → (𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃))
2014, 15, 17, 19syl3anc 1318 . . . 4 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃))
21 eqid 2610 . . . . . . 7 (RLReg‘𝑅) = (RLReg‘𝑅)
22 eqid 2610 . . . . . . 7 (0g𝑃) = (0g𝑃)
23 nzrring 19082 . . . . . . . 8 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2423adantr 480 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑅 ∈ Ring)
251, 22, 3mon1pn0 23710 . . . . . . . 8 (𝑥𝑀𝑥 ≠ (0g𝑃))
2625ad2antrl 760 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑥 ≠ (0g𝑃))
27 eqid 2610 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
288, 27, 3mon1pldg 23713 . . . . . . . . 9 (𝑥𝑀 → ((coe1𝑥)‘(( deg1𝑅)‘𝑥)) = (1r𝑅))
2928ad2antrl 760 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1𝑥)‘(( deg1𝑅)‘𝑥)) = (1r𝑅))
30 eqid 2610 . . . . . . . . . . . 12 (Unit‘𝑅) = (Unit‘𝑅)
3121, 30unitrrg 19114 . . . . . . . . . . 11 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
3223, 31syl 17 . . . . . . . . . 10 (𝑅 ∈ NzRing → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
3330, 271unit 18481 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Unit‘𝑅))
3423, 33syl 17 . . . . . . . . . 10 (𝑅 ∈ NzRing → (1r𝑅) ∈ (Unit‘𝑅))
3532, 34sseldd 3569 . . . . . . . . 9 (𝑅 ∈ NzRing → (1r𝑅) ∈ (RLReg‘𝑅))
3635adantr 480 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (1r𝑅) ∈ (RLReg‘𝑅))
3729, 36eqeltrd 2688 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1𝑥)‘(( deg1𝑅)‘𝑥)) ∈ (RLReg‘𝑅))
381, 22, 3mon1pn0 23710 . . . . . . . 8 (𝑦𝑀𝑦 ≠ (0g𝑃))
3938ad2antll 761 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑦 ≠ (0g𝑃))
408, 1, 21, 2, 18, 22, 24, 15, 26, 37, 17, 39deg1mul2 23678 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) = ((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦)))
418, 1, 22, 2deg1nn0cl 23652 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑥 ≠ (0g𝑃)) → (( deg1𝑅)‘𝑥) ∈ ℕ0)
4224, 15, 26, 41syl3anc 1318 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘𝑥) ∈ ℕ0)
438, 1, 22, 2deg1nn0cl 23652 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑃) ∧ 𝑦 ≠ (0g𝑃)) → (( deg1𝑅)‘𝑦) ∈ ℕ0)
4424, 17, 39, 43syl3anc 1318 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘𝑦) ∈ ℕ0)
4542, 44nn0addcld 11232 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦)) ∈ ℕ0)
4640, 45eqeltrd 2688 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) ∈ ℕ0)
478, 1, 22, 2deg1nn0clb 23654 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃)) → ((𝑥(.r𝑃)𝑦) ≠ (0g𝑃) ↔ (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) ∈ ℕ0))
4824, 20, 47syl2anc 691 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((𝑥(.r𝑃)𝑦) ≠ (0g𝑃) ↔ (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) ∈ ℕ0))
4946, 48mpbird 246 . . . 4 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (𝑥(.r𝑃)𝑦) ≠ (0g𝑃))
5040fveq2d 6107 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘(( deg1𝑅)‘(𝑥(.r𝑃)𝑦))) = ((coe1‘(𝑥(.r𝑃)𝑦))‘((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦))))
51 eqid 2610 . . . . . . 7 (.r𝑅) = (.r𝑅)
521, 18, 51, 2, 8, 22, 24, 15, 26, 17, 39coe1mul4 23664 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦))) = (((coe1𝑥)‘(( deg1𝑅)‘𝑥))(.r𝑅)((coe1𝑦)‘(( deg1𝑅)‘𝑦))))
538, 27, 3mon1pldg 23713 . . . . . . . . 9 (𝑦𝑀 → ((coe1𝑦)‘(( deg1𝑅)‘𝑦)) = (1r𝑅))
5453ad2antll 761 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1𝑦)‘(( deg1𝑅)‘𝑦)) = (1r𝑅))
5529, 54oveq12d 6567 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (((coe1𝑥)‘(( deg1𝑅)‘𝑥))(.r𝑅)((coe1𝑦)‘(( deg1𝑅)‘𝑦))) = ((1r𝑅)(.r𝑅)(1r𝑅)))
56 eqid 2610 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
5756, 27ringidcl 18391 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
5823, 57syl 17 . . . . . . . . 9 (𝑅 ∈ NzRing → (1r𝑅) ∈ (Base‘𝑅))
5956, 51, 27ringlidm 18394 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6023, 58, 59syl2anc 691 . . . . . . . 8 (𝑅 ∈ NzRing → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6160adantr 480 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6255, 61eqtrd 2644 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (((coe1𝑥)‘(( deg1𝑅)‘𝑥))(.r𝑅)((coe1𝑦)‘(( deg1𝑅)‘𝑦))) = (1r𝑅))
6352, 62eqtrd 2644 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦))) = (1r𝑅))
6450, 63eqtrd 2644 . . . 4 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘(( deg1𝑅)‘(𝑥(.r𝑃)𝑦))) = (1r𝑅))
651, 2, 22, 8, 3, 27ismon1p 23706 . . . 4 ((𝑥(.r𝑃)𝑦) ∈ 𝑀 ↔ ((𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃) ∧ (𝑥(.r𝑃)𝑦) ≠ (0g𝑃) ∧ ((coe1‘(𝑥(.r𝑃)𝑦))‘(( deg1𝑅)‘(𝑥(.r𝑃)𝑦))) = (1r𝑅)))
6620, 49, 64, 65syl3anbrc 1239 . . 3 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (𝑥(.r𝑃)𝑦) ∈ 𝑀)
6766ralrimivva 2954 . 2 (𝑅 ∈ NzRing → ∀𝑥𝑀𝑦𝑀 (𝑥(.r𝑃)𝑦) ∈ 𝑀)
68 mon1psubm.u . . . . 5 𝑈 = (mulGrp‘𝑃)
6968ringmgp 18376 . . . 4 (𝑃 ∈ Ring → 𝑈 ∈ Mnd)
7013, 69syl 17 . . 3 (𝑅 ∈ NzRing → 𝑈 ∈ Mnd)
7168, 2mgpbas 18318 . . . 4 (Base‘𝑃) = (Base‘𝑈)
7268, 7ringidval 18326 . . . 4 (1r𝑃) = (0g𝑈)
7368, 18mgpplusg 18316 . . . 4 (.r𝑃) = (+g𝑈)
7471, 72, 73issubm 17170 . . 3 (𝑈 ∈ Mnd → (𝑀 ∈ (SubMnd‘𝑈) ↔ (𝑀 ⊆ (Base‘𝑃) ∧ (1r𝑃) ∈ 𝑀 ∧ ∀𝑥𝑀𝑦𝑀 (𝑥(.r𝑃)𝑦) ∈ 𝑀)))
7570, 74syl 17 . 2 (𝑅 ∈ NzRing → (𝑀 ∈ (SubMnd‘𝑈) ↔ (𝑀 ⊆ (Base‘𝑃) ∧ (1r𝑃) ∈ 𝑀 ∧ ∀𝑥𝑀𝑦𝑀 (𝑥(.r𝑃)𝑦) ∈ 𝑀)))
766, 10, 67, 75mpbir3and 1238 1 (𝑅 ∈ NzRing → 𝑀 ∈ (SubMnd‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wss 3540  cfv 5804  (class class class)co 6549  0cc0 9815   + caddc 9818  0cn0 11169  Basecbs 15695  .rcmulr 15769  0gc0g 15923  Mndcmnd 17117  SubMndcsubmnd 17157  mulGrpcmgp 18312  1rcur 18324  Ringcrg 18370  Unitcui 18462  NzRingcnzr 19078  RLRegcrlreg 19100  Poly1cpl1 19368  coe1cco1 19369   deg1 cdg1 23618  Monic1pcmn1 23689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-subrg 18601  df-lmod 18688  df-lss 18754  df-nzr 19079  df-rlreg 19104  df-ascl 19135  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-vr1 19372  df-ply1 19373  df-coe1 19374  df-cnfld 19568  df-mdeg 23619  df-deg1 23620  df-mon1 23694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator