Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitrrg Structured version   Visualization version   GIF version

Theorem unitrrg 19114
 Description: Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
unitrrg.e 𝐸 = (RLReg‘𝑅)
unitrrg.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
unitrrg (𝑅 ∈ Ring → 𝑈𝐸)

Proof of Theorem unitrrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 unitrrg.u . . . . . 6 𝑈 = (Unit‘𝑅)
31, 2unitcl 18482 . . . . 5 (𝑥𝑈𝑥 ∈ (Base‘𝑅))
43adantl 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑥 ∈ (Base‘𝑅))
5 oveq2 6557 . . . . . 6 ((𝑥(.r𝑅)𝑦) = (0g𝑅) → (((invr𝑅)‘𝑥)(.r𝑅)(𝑥(.r𝑅)𝑦)) = (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)))
6 eqid 2610 . . . . . . . . . . 11 (invr𝑅) = (invr𝑅)
7 eqid 2610 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
8 eqid 2610 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
92, 6, 7, 8unitlinv 18500 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (((invr𝑅)‘𝑥)(.r𝑅)𝑥) = (1r𝑅))
109adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr𝑅)‘𝑥)(.r𝑅)𝑥) = (1r𝑅))
1110oveq1d 6564 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr𝑅)‘𝑥)(.r𝑅)𝑥)(.r𝑅)𝑦) = ((1r𝑅)(.r𝑅)𝑦))
12 simpll 786 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
132, 6, 1ringinvcl 18499 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((invr𝑅)‘𝑥) ∈ (Base‘𝑅))
1413adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((invr𝑅)‘𝑥) ∈ (Base‘𝑅))
154adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
16 simpr 476 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅))
171, 7ringass 18387 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (((invr𝑅)‘𝑥) ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((((invr𝑅)‘𝑥)(.r𝑅)𝑥)(.r𝑅)𝑦) = (((invr𝑅)‘𝑥)(.r𝑅)(𝑥(.r𝑅)𝑦)))
1812, 14, 15, 16, 17syl13anc 1320 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr𝑅)‘𝑥)(.r𝑅)𝑥)(.r𝑅)𝑦) = (((invr𝑅)‘𝑥)(.r𝑅)(𝑥(.r𝑅)𝑦)))
191, 7, 8ringlidm 18394 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑦) = 𝑦)
2019adantlr 747 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑦) = 𝑦)
2111, 18, 203eqtr3d 2652 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr𝑅)‘𝑥)(.r𝑅)(𝑥(.r𝑅)𝑦)) = 𝑦)
22 eqid 2610 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
231, 7, 22ringrz 18411 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘𝑥) ∈ (Base‘𝑅)) → (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = (0g𝑅))
2412, 14, 23syl2anc 691 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) = (0g𝑅))
2521, 24eqeq12d 2625 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr𝑅)‘𝑥)(.r𝑅)(𝑥(.r𝑅)𝑦)) = (((invr𝑅)‘𝑥)(.r𝑅)(0g𝑅)) ↔ 𝑦 = (0g𝑅)))
265, 25syl5ib 233 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑥𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦) = (0g𝑅) → 𝑦 = (0g𝑅)))
2726ralrimiva 2949 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → 𝑦 = (0g𝑅)))
28 unitrrg.e . . . . 5 𝐸 = (RLReg‘𝑅)
2928, 1, 7, 22isrrg 19109 . . . 4 (𝑥𝐸 ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → 𝑦 = (0g𝑅))))
304, 27, 29sylanbrc 695 . . 3 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → 𝑥𝐸)
3130ex 449 . 2 (𝑅 ∈ Ring → (𝑥𝑈𝑥𝐸))
3231ssrdv 3574 1 (𝑅 ∈ Ring → 𝑈𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ⊆ wss 3540  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  .rcmulr 15769  0gc0g 15923  1rcur 18324  Ringcrg 18370  Unitcui 18462  invrcinvr 18494  RLRegcrlreg 19100 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-rlreg 19104 This theorem is referenced by:  drngdomn  19124  znrrg  19733  deg1invg  23670  ply1divalg  23701  uc1pmon1p  23715  fta1glem1  23729  ig1peu  23735  mon1psubm  36803
 Copyright terms: Public domain W3C validator