MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem3b Structured version   Visualization version   GIF version

Theorem minveclem3b 23007
Description: Lemma for minvec 23015. The set of vectors within a fixed distance of the infimum forms a filter base. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
minvec.f 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
Assertion
Ref Expression
minveclem3b (𝜑𝐹 ∈ (fBas‘𝑌))
Distinct variable groups:   𝑦,   𝑦,𝑟,𝐴   𝐽,𝑟,𝑦   𝑦,𝐹   𝑦,𝑁   𝜑,𝑟,𝑦   𝑦,𝑅   𝑦,𝑈   𝑋,𝑟,𝑦   𝑌,𝑟,𝑦   𝐷,𝑟,𝑦   𝑆,𝑟,𝑦
Allowed substitution hints:   𝑅(𝑟)   𝑈(𝑟)   𝐹(𝑟)   (𝑟)   𝑁(𝑟)

Proof of Theorem minveclem3b
Dummy variables 𝑤 𝑠 𝑡 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minvec.f . . 3 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
2 ssrab2 3650 . . . . . 6 {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} ⊆ 𝑌
3 minvec.y . . . . . . . 8 (𝜑𝑌 ∈ (LSubSp‘𝑈))
43adantr 480 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → 𝑌 ∈ (LSubSp‘𝑈))
5 elpw2g 4754 . . . . . . 7 (𝑌 ∈ (LSubSp‘𝑈) → ({𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} ∈ 𝒫 𝑌 ↔ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} ⊆ 𝑌))
64, 5syl 17 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → ({𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} ∈ 𝒫 𝑌 ↔ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} ⊆ 𝑌))
72, 6mpbiri 247 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} ∈ 𝒫 𝑌)
8 eqid 2610 . . . . 5 (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
97, 8fmptd 6292 . . . 4 (𝜑 → (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}):ℝ+⟶𝒫 𝑌)
10 frn 5966 . . . 4 ((𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}):ℝ+⟶𝒫 𝑌 → ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) ⊆ 𝒫 𝑌)
119, 10syl 17 . . 3 (𝜑 → ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) ⊆ 𝒫 𝑌)
121, 11syl5eqss 3612 . 2 (𝜑𝐹 ⊆ 𝒫 𝑌)
13 1rp 11712 . . . . . 6 1 ∈ ℝ+
148, 7dmmptd 5937 . . . . . 6 (𝜑 → dom (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = ℝ+)
1513, 14syl5eleqr 2695 . . . . 5 (𝜑 → 1 ∈ dom (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
16 ne0i 3880 . . . . 5 (1 ∈ dom (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) → dom (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) ≠ ∅)
1715, 16syl 17 . . . 4 (𝜑 → dom (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) ≠ ∅)
18 dm0rn0 5263 . . . . . 6 (dom (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = ∅ ↔ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = ∅)
191eqeq1i 2615 . . . . . 6 (𝐹 = ∅ ↔ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = ∅)
2018, 19bitr4i 266 . . . . 5 (dom (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = ∅ ↔ 𝐹 = ∅)
2120necon3bii 2834 . . . 4 (dom (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) ≠ ∅ ↔ 𝐹 ≠ ∅)
2217, 21sylib 207 . . 3 (𝜑𝐹 ≠ ∅)
23 minvec.x . . . . . . . . . . . . . . . . . 18 𝑋 = (Base‘𝑈)
24 minvec.m . . . . . . . . . . . . . . . . . 18 = (-g𝑈)
25 minvec.n . . . . . . . . . . . . . . . . . 18 𝑁 = (norm‘𝑈)
26 minvec.u . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 ∈ ℂPreHil)
27 minvec.w . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
28 minvec.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝑋)
29 minvec.j . . . . . . . . . . . . . . . . . 18 𝐽 = (TopOpen‘𝑈)
30 minvec.r . . . . . . . . . . . . . . . . . 18 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
31 minvec.s . . . . . . . . . . . . . . . . . 18 𝑆 = inf(𝑅, ℝ, < )
3223, 24, 25, 26, 3, 27, 28, 29, 30, 31minveclem4c 23004 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ ℝ)
3332resqcld 12897 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆↑2) ∈ ℝ)
34 ltaddrp 11743 . . . . . . . . . . . . . . . 16 (((𝑆↑2) ∈ ℝ ∧ 𝑟 ∈ ℝ+) → (𝑆↑2) < ((𝑆↑2) + 𝑟))
3533, 34sylan 487 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ ℝ+) → (𝑆↑2) < ((𝑆↑2) + 𝑟))
3633adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ ℝ+) → (𝑆↑2) ∈ ℝ)
37 rpre 11715 . . . . . . . . . . . . . . . . . . 19 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
3837adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ)
3936, 38readdcld 9948 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ ℝ+) → ((𝑆↑2) + 𝑟) ∈ ℝ)
4039recnd 9947 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ ℝ+) → ((𝑆↑2) + 𝑟) ∈ ℂ)
4140sqsqrtd 14026 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ ℝ+) → ((√‘((𝑆↑2) + 𝑟))↑2) = ((𝑆↑2) + 𝑟))
4235, 41breqtrrd 4611 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ ℝ+) → (𝑆↑2) < ((√‘((𝑆↑2) + 𝑟))↑2))
4323, 24, 25, 26, 3, 27, 28, 29, 30minveclem1 23003 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
4443simp1d 1066 . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ⊆ ℝ)
4544adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ ℝ+) → 𝑅 ⊆ ℝ)
4643simp2d 1067 . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ≠ ∅)
4746adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ ℝ+) → 𝑅 ≠ ∅)
48 0re 9919 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
4943simp3d 1068 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
50 breq1 4586 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 0 → (𝑦𝑤 ↔ 0 ≤ 𝑤))
5150ralbidv 2969 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 0 → (∀𝑤𝑅 𝑦𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
5251rspcev 3282 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑦 ∈ ℝ ∀𝑤𝑅 𝑦𝑤)
5348, 49, 52sylancr 694 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤𝑅 𝑦𝑤)
5453adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑤𝑅 𝑦𝑤)
55 infrecl 10882 . . . . . . . . . . . . . . . . 17 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤𝑅 𝑦𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
5645, 47, 54, 55syl3anc 1318 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ ℝ+) → inf(𝑅, ℝ, < ) ∈ ℝ)
5731, 56syl5eqel 2692 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ ℝ+) → 𝑆 ∈ ℝ)
58 0red 9920 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ ℝ+) → 0 ∈ ℝ)
5957sqge0d 12898 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ ℝ+) → 0 ≤ (𝑆↑2))
6058, 36, 39, 59, 35lelttrd 10074 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ ℝ+) → 0 < ((𝑆↑2) + 𝑟))
6158, 39, 60ltled 10064 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ ℝ+) → 0 ≤ ((𝑆↑2) + 𝑟))
6239, 61resqrtcld 14004 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ ℝ+) → (√‘((𝑆↑2) + 𝑟)) ∈ ℝ)
6349adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ ℝ+) → ∀𝑤𝑅 0 ≤ 𝑤)
64 infregelb 10884 . . . . . . . . . . . . . . . . . 18 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤𝑅 𝑦𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
6545, 47, 54, 58, 64syl31anc 1321 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ ℝ+) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
6663, 65mpbird 246 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ ℝ+) → 0 ≤ inf(𝑅, ℝ, < ))
6766, 31syl6breqr 4625 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ ℝ+) → 0 ≤ 𝑆)
6839, 61sqrtge0d 14007 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ ℝ+) → 0 ≤ (√‘((𝑆↑2) + 𝑟)))
6957, 62, 67, 68lt2sqd 12905 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ ℝ+) → (𝑆 < (√‘((𝑆↑2) + 𝑟)) ↔ (𝑆↑2) < ((√‘((𝑆↑2) + 𝑟))↑2)))
7042, 69mpbird 246 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℝ+) → 𝑆 < (√‘((𝑆↑2) + 𝑟)))
7157, 62ltnled 10063 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℝ+) → (𝑆 < (√‘((𝑆↑2) + 𝑟)) ↔ ¬ (√‘((𝑆↑2) + 𝑟)) ≤ 𝑆))
7270, 71mpbid 221 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ+) → ¬ (√‘((𝑆↑2) + 𝑟)) ≤ 𝑆)
7331breq2i 4591 . . . . . . . . . . . . 13 ((√‘((𝑆↑2) + 𝑟)) ≤ 𝑆 ↔ (√‘((𝑆↑2) + 𝑟)) ≤ inf(𝑅, ℝ, < ))
74 infregelb 10884 . . . . . . . . . . . . . . 15 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤𝑅 𝑦𝑤) ∧ (√‘((𝑆↑2) + 𝑟)) ∈ ℝ) → ((√‘((𝑆↑2) + 𝑟)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (√‘((𝑆↑2) + 𝑟)) ≤ 𝑤))
7545, 47, 54, 62, 74syl31anc 1321 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ ℝ+) → ((√‘((𝑆↑2) + 𝑟)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (√‘((𝑆↑2) + 𝑟)) ≤ 𝑤))
7630raleqi 3119 . . . . . . . . . . . . . . 15 (∀𝑤𝑅 (√‘((𝑆↑2) + 𝑟)) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))(√‘((𝑆↑2) + 𝑟)) ≤ 𝑤)
77 fvex 6113 . . . . . . . . . . . . . . . . 17 (𝑁‘(𝐴 𝑦)) ∈ V
7877rgenw 2908 . . . . . . . . . . . . . . . 16 𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V
79 eqid 2610 . . . . . . . . . . . . . . . . 17 (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
80 breq2 4587 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝑁‘(𝐴 𝑦)) → ((√‘((𝑆↑2) + 𝑟)) ≤ 𝑤 ↔ (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 𝑦))))
8179, 80ralrnmpt 6276 . . . . . . . . . . . . . . . 16 (∀𝑦𝑌 (𝑁‘(𝐴 𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))(√‘((𝑆↑2) + 𝑟)) ≤ 𝑤 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 𝑦))))
8278, 81ax-mp 5 . . . . . . . . . . . . . . 15 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))(√‘((𝑆↑2) + 𝑟)) ≤ 𝑤 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 𝑦)))
8376, 82bitri 263 . . . . . . . . . . . . . 14 (∀𝑤𝑅 (√‘((𝑆↑2) + 𝑟)) ≤ 𝑤 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 𝑦)))
8475, 83syl6bb 275 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℝ+) → ((√‘((𝑆↑2) + 𝑟)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 𝑦))))
8573, 84syl5bb 271 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ+) → ((√‘((𝑆↑2) + 𝑟)) ≤ 𝑆 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 𝑦))))
8672, 85mtbid 313 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → ¬ ∀𝑦𝑌 (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 𝑦)))
87 rexnal 2978 . . . . . . . . . . 11 (∃𝑦𝑌 ¬ (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 𝑦)) ↔ ¬ ∀𝑦𝑌 (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 𝑦)))
8886, 87sylibr 223 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → ∃𝑦𝑌 ¬ (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 𝑦)))
8962adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → (√‘((𝑆↑2) + 𝑟)) ∈ ℝ)
90 cphngp 22781 . . . . . . . . . . . . . . . . . . 19 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
9126, 90syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 ∈ NrmGrp)
92 ngpms 22214 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp)
93 minvec.d . . . . . . . . . . . . . . . . . . 19 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
9423, 93msmet 22072 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋))
9591, 92, 943syl 18 . . . . . . . . . . . . . . . . 17 (𝜑𝐷 ∈ (Met‘𝑋))
9695ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → 𝐷 ∈ (Met‘𝑋))
9728ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → 𝐴𝑋)
98 eqid 2610 . . . . . . . . . . . . . . . . . . 19 (LSubSp‘𝑈) = (LSubSp‘𝑈)
9923, 98lssss 18758 . . . . . . . . . . . . . . . . . 18 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
1004, 99syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ ℝ+) → 𝑌𝑋)
101100sselda 3568 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → 𝑦𝑋)
102 metcl 21947 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝐷𝑦) ∈ ℝ)
10396, 97, 101, 102syl3anc 1318 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → (𝐴𝐷𝑦) ∈ ℝ)
10468adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → 0 ≤ (√‘((𝑆↑2) + 𝑟)))
105 metge0 21960 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝑦𝑋) → 0 ≤ (𝐴𝐷𝑦))
10696, 97, 101, 105syl3anc 1318 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → 0 ≤ (𝐴𝐷𝑦))
10789, 103, 104, 106le2sqd 12906 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + 𝑟)) ≤ (𝐴𝐷𝑦) ↔ ((√‘((𝑆↑2) + 𝑟))↑2) ≤ ((𝐴𝐷𝑦)↑2)))
10893oveqi 6562 . . . . . . . . . . . . . . . . 17 (𝐴𝐷𝑦) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑦)
10997, 101ovresd 6699 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑦) = (𝐴(dist‘𝑈)𝑦))
110108, 109syl5eq 2656 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → (𝐴𝐷𝑦) = (𝐴(dist‘𝑈)𝑦))
11191ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → 𝑈 ∈ NrmGrp)
112 eqid 2610 . . . . . . . . . . . . . . . . . 18 (dist‘𝑈) = (dist‘𝑈)
11325, 23, 24, 112ngpds 22218 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmGrp ∧ 𝐴𝑋𝑦𝑋) → (𝐴(dist‘𝑈)𝑦) = (𝑁‘(𝐴 𝑦)))
114111, 97, 101, 113syl3anc 1318 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → (𝐴(dist‘𝑈)𝑦) = (𝑁‘(𝐴 𝑦)))
115110, 114eqtrd 2644 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → (𝐴𝐷𝑦) = (𝑁‘(𝐴 𝑦)))
116115breq2d 4595 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + 𝑟)) ≤ (𝐴𝐷𝑦) ↔ (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 𝑦))))
11741adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + 𝑟))↑2) = ((𝑆↑2) + 𝑟))
118117breq1d 4593 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → (((√‘((𝑆↑2) + 𝑟))↑2) ≤ ((𝐴𝐷𝑦)↑2) ↔ ((𝑆↑2) + 𝑟) ≤ ((𝐴𝐷𝑦)↑2)))
119107, 116, 1183bitr3d 297 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 𝑦)) ↔ ((𝑆↑2) + 𝑟) ≤ ((𝐴𝐷𝑦)↑2)))
120119notbid 307 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → (¬ (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 𝑦)) ↔ ¬ ((𝑆↑2) + 𝑟) ≤ ((𝐴𝐷𝑦)↑2)))
12139adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → ((𝑆↑2) + 𝑟) ∈ ℝ)
122103resqcld 12897 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → ((𝐴𝐷𝑦)↑2) ∈ ℝ)
123121, 122letrid 10068 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → (((𝑆↑2) + 𝑟) ≤ ((𝐴𝐷𝑦)↑2) ∨ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)))
124123ord 391 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → (¬ ((𝑆↑2) + 𝑟) ≤ ((𝐴𝐷𝑦)↑2) → ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)))
125120, 124sylbid 229 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → (¬ (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 𝑦)) → ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)))
126125reximdva 3000 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → (∃𝑦𝑌 ¬ (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 𝑦)) → ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)))
12788, 126mpd 15 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟))
128 rabn0 3912 . . . . . . . . 9 ({𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} ≠ ∅ ↔ ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟))
129127, 128sylibr 223 . . . . . . . 8 ((𝜑𝑟 ∈ ℝ+) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} ≠ ∅)
130129necomd 2837 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → ∅ ≠ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
131130neneqd 2787 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → ¬ ∅ = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
132131nrexdv 2984 . . . . 5 (𝜑 → ¬ ∃𝑟 ∈ ℝ+ ∅ = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
1331eleq2i 2680 . . . . . 6 (∅ ∈ 𝐹 ↔ ∅ ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
134 0ex 4718 . . . . . . 7 ∅ ∈ V
1358elrnmpt 5293 . . . . . . 7 (∅ ∈ V → (∅ ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) ↔ ∃𝑟 ∈ ℝ+ ∅ = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
136134, 135ax-mp 5 . . . . . 6 (∅ ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) ↔ ∃𝑟 ∈ ℝ+ ∅ = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
137133, 136bitri 263 . . . . 5 (∅ ∈ 𝐹 ↔ ∃𝑟 ∈ ℝ+ ∅ = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
138132, 137sylnibr 318 . . . 4 (𝜑 → ¬ ∅ ∈ 𝐹)
139 df-nel 2783 . . . 4 (∅ ∉ 𝐹 ↔ ¬ ∅ ∈ 𝐹)
140138, 139sylibr 223 . . 3 (𝜑 → ∅ ∉ 𝐹)
14157adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → 𝑆 ∈ ℝ)
142141resqcld 12897 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → (𝑆↑2) ∈ ℝ)
14338adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → 𝑟 ∈ ℝ)
144122, 142, 143lesubadd2d 10505 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑦𝑌) → ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟 ↔ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)))
145144rabbidva 3163 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟} = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
146145mpteq2dva 4672 . . . . . . . . . 10 (𝜑 → (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) = (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
147146rneqd 5274 . . . . . . . . 9 (𝜑 → ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
148147, 1syl6reqr 2663 . . . . . . . 8 (𝜑𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}))
149148eleq2d 2673 . . . . . . 7 (𝜑 → (𝑢𝐹𝑢 ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟})))
150 vex 3176 . . . . . . . 8 𝑢 ∈ V
151 breq2 4587 . . . . . . . . . . 11 (𝑟 = 𝑠 → ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟 ↔ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠))
152151rabbidv 3164 . . . . . . . . . 10 (𝑟 = 𝑠 → {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟} = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠})
153152cbvmptv 4678 . . . . . . . . 9 (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) = (𝑠 ∈ ℝ+ ↦ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠})
154153elrnmpt 5293 . . . . . . . 8 (𝑢 ∈ V → (𝑢 ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) ↔ ∃𝑠 ∈ ℝ+ 𝑢 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠}))
155150, 154ax-mp 5 . . . . . . 7 (𝑢 ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) ↔ ∃𝑠 ∈ ℝ+ 𝑢 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠})
156149, 155syl6bb 275 . . . . . 6 (𝜑 → (𝑢𝐹 ↔ ∃𝑠 ∈ ℝ+ 𝑢 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠}))
157148eleq2d 2673 . . . . . . 7 (𝜑 → (𝑣𝐹𝑣 ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟})))
158 vex 3176 . . . . . . . 8 𝑣 ∈ V
159 breq2 4587 . . . . . . . . . . 11 (𝑟 = 𝑡 → ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟 ↔ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡))
160159rabbidv 3164 . . . . . . . . . 10 (𝑟 = 𝑡 → {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟} = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡})
161160cbvmptv 4678 . . . . . . . . 9 (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) = (𝑡 ∈ ℝ+ ↦ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡})
162161elrnmpt 5293 . . . . . . . 8 (𝑣 ∈ V → (𝑣 ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) ↔ ∃𝑡 ∈ ℝ+ 𝑣 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}))
163158, 162ax-mp 5 . . . . . . 7 (𝑣 ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) ↔ ∃𝑡 ∈ ℝ+ 𝑣 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡})
164157, 163syl6bb 275 . . . . . 6 (𝜑 → (𝑣𝐹 ↔ ∃𝑡 ∈ ℝ+ 𝑣 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}))
165156, 164anbi12d 743 . . . . 5 (𝜑 → ((𝑢𝐹𝑣𝐹) ↔ (∃𝑠 ∈ ℝ+ 𝑢 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ ∃𝑡 ∈ ℝ+ 𝑣 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡})))
166 reeanv 3086 . . . . . 6 (∃𝑠 ∈ ℝ+𝑡 ∈ ℝ+ (𝑢 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ 𝑣 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) ↔ (∃𝑠 ∈ ℝ+ 𝑢 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ ∃𝑡 ∈ ℝ+ 𝑣 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}))
16795ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) ∧ 𝑦𝑌) → 𝐷 ∈ (Met‘𝑋))
16828ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) ∧ 𝑦𝑌) → 𝐴𝑋)
1693, 99syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑌𝑋)
170169adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) → 𝑌𝑋)
171170sselda 3568 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) ∧ 𝑦𝑌) → 𝑦𝑋)
172167, 168, 171, 102syl3anc 1318 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) ∧ 𝑦𝑌) → (𝐴𝐷𝑦) ∈ ℝ)
173172resqcld 12897 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) ∧ 𝑦𝑌) → ((𝐴𝐷𝑦)↑2) ∈ ℝ)
17433ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) ∧ 𝑦𝑌) → (𝑆↑2) ∈ ℝ)
175173, 174resubcld 10337 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) ∧ 𝑦𝑌) → (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ∈ ℝ)
176 simplrl 796 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) ∧ 𝑦𝑌) → 𝑠 ∈ ℝ+)
177176rpred 11748 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) ∧ 𝑦𝑌) → 𝑠 ∈ ℝ)
178 simplrr 797 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) ∧ 𝑦𝑌) → 𝑡 ∈ ℝ+)
179178rpred 11748 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) ∧ 𝑦𝑌) → 𝑡 ∈ ℝ)
180 lemin 11897 . . . . . . . . . . . 12 (((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ) → ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠𝑡, 𝑠, 𝑡) ↔ ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠 ∧ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡)))
181175, 177, 179, 180syl3anc 1318 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) ∧ 𝑦𝑌) → ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠𝑡, 𝑠, 𝑡) ↔ ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠 ∧ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡)))
182181rabbidva 3163 . . . . . . . . . 10 ((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) → {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠𝑡, 𝑠, 𝑡)} = {𝑦𝑌 ∣ ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠 ∧ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡)})
183 ifcl 4080 . . . . . . . . . . . . 13 ((𝑠 ∈ ℝ+𝑡 ∈ ℝ+) → if(𝑠𝑡, 𝑠, 𝑡) ∈ ℝ+)
184183adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) → if(𝑠𝑡, 𝑠, 𝑡) ∈ ℝ+)
1853adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) → 𝑌 ∈ (LSubSp‘𝑈))
186 rabexg 4739 . . . . . . . . . . . . 13 (𝑌 ∈ (LSubSp‘𝑈) → {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠𝑡, 𝑠, 𝑡)} ∈ V)
187185, 186syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) → {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠𝑡, 𝑠, 𝑡)} ∈ V)
188 eqid 2610 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) = (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟})
189 breq2 4587 . . . . . . . . . . . . . 14 (𝑟 = if(𝑠𝑡, 𝑠, 𝑡) → ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟 ↔ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠𝑡, 𝑠, 𝑡)))
190189rabbidv 3164 . . . . . . . . . . . . 13 (𝑟 = if(𝑠𝑡, 𝑠, 𝑡) → {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟} = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠𝑡, 𝑠, 𝑡)})
191188, 190elrnmpt1s 5294 . . . . . . . . . . . 12 ((if(𝑠𝑡, 𝑠, 𝑡) ∈ ℝ+ ∧ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠𝑡, 𝑠, 𝑡)} ∈ V) → {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠𝑡, 𝑠, 𝑡)} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}))
192184, 187, 191syl2anc 691 . . . . . . . . . . 11 ((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) → {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠𝑡, 𝑠, 𝑡)} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}))
193148adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) → 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}))
194192, 193eleqtrrd 2691 . . . . . . . . . 10 ((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) → {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠𝑡, 𝑠, 𝑡)} ∈ 𝐹)
195182, 194eqeltrrd 2689 . . . . . . . . 9 ((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) → {𝑦𝑌 ∣ ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠 ∧ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡)} ∈ 𝐹)
196 ineq12 3771 . . . . . . . . . . 11 ((𝑢 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ 𝑣 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) → (𝑢𝑣) = ({𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∩ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}))
197 inrab 3858 . . . . . . . . . . 11 ({𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∩ {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) = {𝑦𝑌 ∣ ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠 ∧ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡)}
198196, 197syl6eq 2660 . . . . . . . . . 10 ((𝑢 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ 𝑣 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) → (𝑢𝑣) = {𝑦𝑌 ∣ ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠 ∧ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡)})
199198eleq1d 2672 . . . . . . . . 9 ((𝑢 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ 𝑣 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) → ((𝑢𝑣) ∈ 𝐹 ↔ {𝑦𝑌 ∣ ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠 ∧ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡)} ∈ 𝐹))
200195, 199syl5ibrcom 236 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) → ((𝑢 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ 𝑣 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) → (𝑢𝑣) ∈ 𝐹))
201150inex1 4727 . . . . . . . . . 10 (𝑢𝑣) ∈ V
202201pwid 4122 . . . . . . . . 9 (𝑢𝑣) ∈ 𝒫 (𝑢𝑣)
203 inelcm 3984 . . . . . . . . 9 (((𝑢𝑣) ∈ 𝐹 ∧ (𝑢𝑣) ∈ 𝒫 (𝑢𝑣)) → (𝐹 ∩ 𝒫 (𝑢𝑣)) ≠ ∅)
204202, 203mpan2 703 . . . . . . . 8 ((𝑢𝑣) ∈ 𝐹 → (𝐹 ∩ 𝒫 (𝑢𝑣)) ≠ ∅)
205200, 204syl6 34 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ ℝ+𝑡 ∈ ℝ+)) → ((𝑢 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ 𝑣 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) → (𝐹 ∩ 𝒫 (𝑢𝑣)) ≠ ∅))
206205rexlimdvva 3020 . . . . . 6 (𝜑 → (∃𝑠 ∈ ℝ+𝑡 ∈ ℝ+ (𝑢 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ 𝑣 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) → (𝐹 ∩ 𝒫 (𝑢𝑣)) ≠ ∅))
207166, 206syl5bir 232 . . . . 5 (𝜑 → ((∃𝑠 ∈ ℝ+ 𝑢 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ ∃𝑡 ∈ ℝ+ 𝑣 = {𝑦𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) → (𝐹 ∩ 𝒫 (𝑢𝑣)) ≠ ∅))
208165, 207sylbid 229 . . . 4 (𝜑 → ((𝑢𝐹𝑣𝐹) → (𝐹 ∩ 𝒫 (𝑢𝑣)) ≠ ∅))
209208ralrimivv 2953 . . 3 (𝜑 → ∀𝑢𝐹𝑣𝐹 (𝐹 ∩ 𝒫 (𝑢𝑣)) ≠ ∅)
21022, 140, 2093jca 1235 . 2 (𝜑 → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑢𝐹𝑣𝐹 (𝐹 ∩ 𝒫 (𝑢𝑣)) ≠ ∅))
211 isfbas 21443 . . 3 (𝑌 ∈ (LSubSp‘𝑈) → (𝐹 ∈ (fBas‘𝑌) ↔ (𝐹 ⊆ 𝒫 𝑌 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑢𝐹𝑣𝐹 (𝐹 ∩ 𝒫 (𝑢𝑣)) ≠ ∅))))
2123, 211syl 17 . 2 (𝜑 → (𝐹 ∈ (fBas‘𝑌) ↔ (𝐹 ⊆ 𝒫 𝑌 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑢𝐹𝑣𝐹 (𝐹 ∩ 𝒫 (𝑢𝑣)) ≠ ∅))))
21312, 210, 212mpbir2and 959 1 (𝜑𝐹 ∈ (fBas‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wnel 2781  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cin 3539  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643   × cxp 5036  dom cdm 5038  ran crn 5039  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  infcinf 8230  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145  2c2 10947  +crp 11708  cexp 12722  csqrt 13821  Basecbs 15695  s cress 15696  distcds 15777  TopOpenctopn 15905  -gcsg 17247  LSubSpclss 18753  Metcme 19553  fBascfbas 19555  MetSpcmt 21933  normcnm 22191  NrmGrpcngp 22192  ℂPreHilccph 22774  CMetSpccms 22937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-0g 15925  df-topgen 15927  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-lmod 18688  df-lss 18754  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-xms 21935  df-ms 21936  df-nm 22197  df-ngp 22198  df-nlm 22201  df-cph 22776
This theorem is referenced by:  minveclem3  23008  minveclem4a  23009  minveclem4  23011
  Copyright terms: Public domain W3C validator