Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lclkrlem2m Structured version   Visualization version   GIF version

Theorem lclkrlem2m 35826
Description: Lemma for lclkr 35840. Construct a vector 𝐵 that makes the sum of functionals zero. Combine with 𝐵𝑉 to shorten overall proof. (Contributed by NM, 17-Jan-2015.)
Hypotheses
Ref Expression
lclkrlem2m.v 𝑉 = (Base‘𝑈)
lclkrlem2m.t · = ( ·𝑠𝑈)
lclkrlem2m.s 𝑆 = (Scalar‘𝑈)
lclkrlem2m.q × = (.r𝑆)
lclkrlem2m.z 0 = (0g𝑆)
lclkrlem2m.i 𝐼 = (invr𝑆)
lclkrlem2m.m = (-g𝑈)
lclkrlem2m.f 𝐹 = (LFnl‘𝑈)
lclkrlem2m.d 𝐷 = (LDual‘𝑈)
lclkrlem2m.p + = (+g𝐷)
lclkrlem2m.x (𝜑𝑋𝑉)
lclkrlem2m.y (𝜑𝑌𝑉)
lclkrlem2m.e (𝜑𝐸𝐹)
lclkrlem2m.g (𝜑𝐺𝐹)
lclkrlem2m.w (𝜑𝑈 ∈ LVec)
lclkrlem2m.b 𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))
lclkrlem2m.n (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )
Assertion
Ref Expression
lclkrlem2m (𝜑 → (𝐵𝑉 ∧ ((𝐸 + 𝐺)‘𝐵) = 0 ))

Proof of Theorem lclkrlem2m
StepHypRef Expression
1 lclkrlem2m.b . . 3 𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))
2 lclkrlem2m.w . . . . . 6 (𝜑𝑈 ∈ LVec)
3 lveclmod 18927 . . . . . 6 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
42, 3syl 17 . . . . 5 (𝜑𝑈 ∈ LMod)
5 lmodgrp 18693 . . . . 5 (𝑈 ∈ LMod → 𝑈 ∈ Grp)
64, 5syl 17 . . . 4 (𝜑𝑈 ∈ Grp)
7 lclkrlem2m.x . . . 4 (𝜑𝑋𝑉)
8 lclkrlem2m.s . . . . . . . 8 𝑆 = (Scalar‘𝑈)
98lmodring 18694 . . . . . . 7 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
104, 9syl 17 . . . . . 6 (𝜑𝑆 ∈ Ring)
11 lclkrlem2m.f . . . . . . . 8 𝐹 = (LFnl‘𝑈)
12 lclkrlem2m.d . . . . . . . 8 𝐷 = (LDual‘𝑈)
13 lclkrlem2m.p . . . . . . . 8 + = (+g𝐷)
14 lclkrlem2m.e . . . . . . . 8 (𝜑𝐸𝐹)
15 lclkrlem2m.g . . . . . . . 8 (𝜑𝐺𝐹)
1611, 12, 13, 4, 14, 15ldualvaddcl 33435 . . . . . . 7 (𝜑 → (𝐸 + 𝐺) ∈ 𝐹)
17 eqid 2610 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
18 lclkrlem2m.v . . . . . . . 8 𝑉 = (Base‘𝑈)
198, 17, 18, 11lflcl 33369 . . . . . . 7 ((𝑈 ∈ LVec ∧ (𝐸 + 𝐺) ∈ 𝐹𝑋𝑉) → ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆))
202, 16, 7, 19syl3anc 1318 . . . . . 6 (𝜑 → ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆))
218lvecdrng 18926 . . . . . . . 8 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
222, 21syl 17 . . . . . . 7 (𝜑𝑆 ∈ DivRing)
23 lclkrlem2m.y . . . . . . . 8 (𝜑𝑌𝑉)
248, 17, 18, 11lflcl 33369 . . . . . . . 8 ((𝑈 ∈ LVec ∧ (𝐸 + 𝐺) ∈ 𝐹𝑌𝑉) → ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆))
252, 16, 23, 24syl3anc 1318 . . . . . . 7 (𝜑 → ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆))
26 lclkrlem2m.n . . . . . . 7 (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )
27 lclkrlem2m.z . . . . . . . 8 0 = (0g𝑆)
28 lclkrlem2m.i . . . . . . . 8 𝐼 = (invr𝑆)
2917, 27, 28drnginvrcl 18587 . . . . . . 7 ((𝑆 ∈ DivRing ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) → (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆))
3022, 25, 26, 29syl3anc 1318 . . . . . 6 (𝜑 → (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆))
31 lclkrlem2m.q . . . . . . 7 × = (.r𝑆)
3217, 31ringcl 18384 . . . . . 6 ((𝑆 ∈ Ring ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆))
3310, 20, 30, 32syl3anc 1318 . . . . 5 (𝜑 → (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆))
34 lclkrlem2m.t . . . . . 6 · = ( ·𝑠𝑈)
3518, 8, 34, 17lmodvscl 18703 . . . . 5 ((𝑈 ∈ LMod ∧ (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆) ∧ 𝑌𝑉) → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉)
364, 33, 23, 35syl3anc 1318 . . . 4 (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉)
37 lclkrlem2m.m . . . . 5 = (-g𝑈)
3818, 37grpsubcl 17318 . . . 4 ((𝑈 ∈ Grp ∧ 𝑋𝑉 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉) → (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ∈ 𝑉)
396, 7, 36, 38syl3anc 1318 . . 3 (𝜑 → (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ∈ 𝑉)
401, 39syl5eqel 2692 . 2 (𝜑𝐵𝑉)
411fveq2i 6106 . . 3 ((𝐸 + 𝐺)‘𝐵) = ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)))
42 eqid 2610 . . . . . 6 (-g𝑆) = (-g𝑆)
438, 42, 18, 37, 11lflsub 33372 . . . . 5 ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹 ∧ (𝑋𝑉 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉)) → ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))))
444, 16, 7, 36, 43syl112anc 1322 . . . 4 (𝜑 → ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))))
458, 17, 31, 18, 34, 11lflmul 33373 . . . . . . 7 ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆) ∧ 𝑌𝑉)) → ((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)))
464, 16, 33, 23, 45syl112anc 1322 . . . . . 6 (𝜑 → ((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)))
4717, 31ringass 18387 . . . . . . . 8 ((𝑆 ∈ Ring ∧ (((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆))) → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)) = (((𝐸 + 𝐺)‘𝑋) × ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌))))
4810, 20, 30, 25, 47syl13anc 1320 . . . . . . 7 (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)) = (((𝐸 + 𝐺)‘𝑋) × ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌))))
49 eqid 2610 . . . . . . . . . 10 (1r𝑆) = (1r𝑆)
5017, 27, 31, 49, 28drnginvrl 18589 . . . . . . . . 9 ((𝑆 ∈ DivRing ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) → ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌)) = (1r𝑆))
5122, 25, 26, 50syl3anc 1318 . . . . . . . 8 (𝜑 → ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌)) = (1r𝑆))
5251oveq2d 6565 . . . . . . 7 (𝜑 → (((𝐸 + 𝐺)‘𝑋) × ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌))) = (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)))
5348, 52eqtrd 2644 . . . . . 6 (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)) = (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)))
5417, 31, 49ringridm 18395 . . . . . . 7 ((𝑆 ∈ Ring ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)) = ((𝐸 + 𝐺)‘𝑋))
5510, 20, 54syl2anc 691 . . . . . 6 (𝜑 → (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)) = ((𝐸 + 𝐺)‘𝑋))
5646, 53, 553eqtrd 2648 . . . . 5 (𝜑 → ((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = ((𝐸 + 𝐺)‘𝑋))
5756oveq2d 6565 . . . 4 (𝜑 → (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘𝑋)))
58 ringgrp 18375 . . . . . 6 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
5910, 58syl 17 . . . . 5 (𝜑𝑆 ∈ Grp)
6017, 27, 42grpsubid 17322 . . . . 5 ((𝑆 ∈ Grp ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘𝑋)) = 0 )
6159, 20, 60syl2anc 691 . . . 4 (𝜑 → (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘𝑋)) = 0 )
6244, 57, 613eqtrd 2648 . . 3 (𝜑 → ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = 0 )
6341, 62syl5eq 2656 . 2 (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 0 )
6440, 63jca 553 1 (𝜑 → (𝐵𝑉 ∧ ((𝐸 + 𝐺)‘𝐵) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  Grpcgrp 17245  -gcsg 17247  1rcur 18324  Ringcrg 18370  invrcinvr 18494  DivRingcdr 18570  LModclmod 18686  LVecclvec 18923  LFnlclfn 33362  LDualcld 33428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-lmod 18688  df-lvec 18924  df-lfl 33363  df-ldual 33429
This theorem is referenced by:  lclkrlem2o  35828  lclkrlem2q  35830
  Copyright terms: Public domain W3C validator