Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lclkrlem2m Structured version   Unicode version

Theorem lclkrlem2m 37643
Description: Lemma for lclkr 37657. Construct a vector  B that makes the sum of functionals zero. Combine with  B  e.  V to shorten overall proof. (Contributed by NM, 17-Jan-2015.)
Hypotheses
Ref Expression
lclkrlem2m.v  |-  V  =  ( Base `  U
)
lclkrlem2m.t  |-  .x.  =  ( .s `  U )
lclkrlem2m.s  |-  S  =  (Scalar `  U )
lclkrlem2m.q  |-  .X.  =  ( .r `  S )
lclkrlem2m.z  |-  .0.  =  ( 0g `  S )
lclkrlem2m.i  |-  I  =  ( invr `  S
)
lclkrlem2m.m  |-  .-  =  ( -g `  U )
lclkrlem2m.f  |-  F  =  (LFnl `  U )
lclkrlem2m.d  |-  D  =  (LDual `  U )
lclkrlem2m.p  |-  .+  =  ( +g  `  D )
lclkrlem2m.x  |-  ( ph  ->  X  e.  V )
lclkrlem2m.y  |-  ( ph  ->  Y  e.  V )
lclkrlem2m.e  |-  ( ph  ->  E  e.  F )
lclkrlem2m.g  |-  ( ph  ->  G  e.  F )
lclkrlem2m.w  |-  ( ph  ->  U  e.  LVec )
lclkrlem2m.b  |-  B  =  ( X  .-  (
( ( ( E 
.+  G ) `  X )  .X.  (
I `  ( ( E  .+  G ) `  Y ) ) ) 
.x.  Y ) )
lclkrlem2m.n  |-  ( ph  ->  ( ( E  .+  G ) `  Y
)  =/=  .0.  )
Assertion
Ref Expression
lclkrlem2m  |-  ( ph  ->  ( B  e.  V  /\  ( ( E  .+  G ) `  B
)  =  .0.  )
)

Proof of Theorem lclkrlem2m
StepHypRef Expression
1 lclkrlem2m.b . . 3  |-  B  =  ( X  .-  (
( ( ( E 
.+  G ) `  X )  .X.  (
I `  ( ( E  .+  G ) `  Y ) ) ) 
.x.  Y ) )
2 lclkrlem2m.w . . . . . 6  |-  ( ph  ->  U  e.  LVec )
3 lveclmod 17947 . . . . . 6  |-  ( U  e.  LVec  ->  U  e. 
LMod )
42, 3syl 16 . . . . 5  |-  ( ph  ->  U  e.  LMod )
5 lmodgrp 17714 . . . . 5  |-  ( U  e.  LMod  ->  U  e. 
Grp )
64, 5syl 16 . . . 4  |-  ( ph  ->  U  e.  Grp )
7 lclkrlem2m.x . . . 4  |-  ( ph  ->  X  e.  V )
8 lclkrlem2m.s . . . . . . . 8  |-  S  =  (Scalar `  U )
98lmodring 17715 . . . . . . 7  |-  ( U  e.  LMod  ->  S  e. 
Ring )
104, 9syl 16 . . . . . 6  |-  ( ph  ->  S  e.  Ring )
11 lclkrlem2m.f . . . . . . . 8  |-  F  =  (LFnl `  U )
12 lclkrlem2m.d . . . . . . . 8  |-  D  =  (LDual `  U )
13 lclkrlem2m.p . . . . . . . 8  |-  .+  =  ( +g  `  D )
14 lclkrlem2m.e . . . . . . . 8  |-  ( ph  ->  E  e.  F )
15 lclkrlem2m.g . . . . . . . 8  |-  ( ph  ->  G  e.  F )
1611, 12, 13, 4, 14, 15ldualvaddcl 35252 . . . . . . 7  |-  ( ph  ->  ( E  .+  G
)  e.  F )
17 eqid 2454 . . . . . . . 8  |-  ( Base `  S )  =  (
Base `  S )
18 lclkrlem2m.v . . . . . . . 8  |-  V  =  ( Base `  U
)
198, 17, 18, 11lflcl 35186 . . . . . . 7  |-  ( ( U  e.  LVec  /\  ( E  .+  G )  e.  F  /\  X  e.  V )  ->  (
( E  .+  G
) `  X )  e.  ( Base `  S
) )
202, 16, 7, 19syl3anc 1226 . . . . . 6  |-  ( ph  ->  ( ( E  .+  G ) `  X
)  e.  ( Base `  S ) )
218lvecdrng 17946 . . . . . . . 8  |-  ( U  e.  LVec  ->  S  e.  DivRing )
222, 21syl 16 . . . . . . 7  |-  ( ph  ->  S  e.  DivRing )
23 lclkrlem2m.y . . . . . . . 8  |-  ( ph  ->  Y  e.  V )
248, 17, 18, 11lflcl 35186 . . . . . . . 8  |-  ( ( U  e.  LVec  /\  ( E  .+  G )  e.  F  /\  Y  e.  V )  ->  (
( E  .+  G
) `  Y )  e.  ( Base `  S
) )
252, 16, 23, 24syl3anc 1226 . . . . . . 7  |-  ( ph  ->  ( ( E  .+  G ) `  Y
)  e.  ( Base `  S ) )
26 lclkrlem2m.n . . . . . . 7  |-  ( ph  ->  ( ( E  .+  G ) `  Y
)  =/=  .0.  )
27 lclkrlem2m.z . . . . . . . 8  |-  .0.  =  ( 0g `  S )
28 lclkrlem2m.i . . . . . . . 8  |-  I  =  ( invr `  S
)
2917, 27, 28drnginvrcl 17608 . . . . . . 7  |-  ( ( S  e.  DivRing  /\  (
( E  .+  G
) `  Y )  e.  ( Base `  S
)  /\  ( ( E  .+  G ) `  Y )  =/=  .0.  )  ->  ( I `  ( ( E  .+  G ) `  Y
) )  e.  (
Base `  S )
)
3022, 25, 26, 29syl3anc 1226 . . . . . 6  |-  ( ph  ->  ( I `  (
( E  .+  G
) `  Y )
)  e.  ( Base `  S ) )
31 lclkrlem2m.q . . . . . . 7  |-  .X.  =  ( .r `  S )
3217, 31ringcl 17407 . . . . . 6  |-  ( ( S  e.  Ring  /\  (
( E  .+  G
) `  X )  e.  ( Base `  S
)  /\  ( I `  ( ( E  .+  G ) `  Y
) )  e.  (
Base `  S )
)  ->  ( (
( E  .+  G
) `  X )  .X.  ( I `  (
( E  .+  G
) `  Y )
) )  e.  (
Base `  S )
)
3310, 20, 30, 32syl3anc 1226 . . . . 5  |-  ( ph  ->  ( ( ( E 
.+  G ) `  X )  .X.  (
I `  ( ( E  .+  G ) `  Y ) ) )  e.  ( Base `  S
) )
34 lclkrlem2m.t . . . . . 6  |-  .x.  =  ( .s `  U )
3518, 8, 34, 17lmodvscl 17724 . . . . 5  |-  ( ( U  e.  LMod  /\  (
( ( E  .+  G ) `  X
)  .X.  ( I `  ( ( E  .+  G ) `  Y
) ) )  e.  ( Base `  S
)  /\  Y  e.  V )  ->  (
( ( ( E 
.+  G ) `  X )  .X.  (
I `  ( ( E  .+  G ) `  Y ) ) ) 
.x.  Y )  e.  V )
364, 33, 23, 35syl3anc 1226 . . . 4  |-  ( ph  ->  ( ( ( ( E  .+  G ) `
 X )  .X.  ( I `  (
( E  .+  G
) `  Y )
) )  .x.  Y
)  e.  V )
37 lclkrlem2m.m . . . . 5  |-  .-  =  ( -g `  U )
3818, 37grpsubcl 16317 . . . 4  |-  ( ( U  e.  Grp  /\  X  e.  V  /\  ( ( ( ( E  .+  G ) `
 X )  .X.  ( I `  (
( E  .+  G
) `  Y )
) )  .x.  Y
)  e.  V )  ->  ( X  .-  ( ( ( ( E  .+  G ) `
 X )  .X.  ( I `  (
( E  .+  G
) `  Y )
) )  .x.  Y
) )  e.  V
)
396, 7, 36, 38syl3anc 1226 . . 3  |-  ( ph  ->  ( X  .-  (
( ( ( E 
.+  G ) `  X )  .X.  (
I `  ( ( E  .+  G ) `  Y ) ) ) 
.x.  Y ) )  e.  V )
401, 39syl5eqel 2546 . 2  |-  ( ph  ->  B  e.  V )
411fveq2i 5851 . . 3  |-  ( ( E  .+  G ) `
 B )  =  ( ( E  .+  G ) `  ( X  .-  ( ( ( ( E  .+  G
) `  X )  .X.  ( I `  (
( E  .+  G
) `  Y )
) )  .x.  Y
) ) )
42 eqid 2454 . . . . . 6  |-  ( -g `  S )  =  (
-g `  S )
438, 42, 18, 37, 11lflsub 35189 . . . . 5  |-  ( ( U  e.  LMod  /\  ( E  .+  G )  e.  F  /\  ( X  e.  V  /\  (
( ( ( E 
.+  G ) `  X )  .X.  (
I `  ( ( E  .+  G ) `  Y ) ) ) 
.x.  Y )  e.  V ) )  -> 
( ( E  .+  G ) `  ( X  .-  ( ( ( ( E  .+  G
) `  X )  .X.  ( I `  (
( E  .+  G
) `  Y )
) )  .x.  Y
) ) )  =  ( ( ( E 
.+  G ) `  X ) ( -g `  S ) ( ( E  .+  G ) `
 ( ( ( ( E  .+  G
) `  X )  .X.  ( I `  (
( E  .+  G
) `  Y )
) )  .x.  Y
) ) ) )
444, 16, 7, 36, 43syl112anc 1230 . . . 4  |-  ( ph  ->  ( ( E  .+  G ) `  ( X  .-  ( ( ( ( E  .+  G
) `  X )  .X.  ( I `  (
( E  .+  G
) `  Y )
) )  .x.  Y
) ) )  =  ( ( ( E 
.+  G ) `  X ) ( -g `  S ) ( ( E  .+  G ) `
 ( ( ( ( E  .+  G
) `  X )  .X.  ( I `  (
( E  .+  G
) `  Y )
) )  .x.  Y
) ) ) )
458, 17, 31, 18, 34, 11lflmul 35190 . . . . . . 7  |-  ( ( U  e.  LMod  /\  ( E  .+  G )  e.  F  /\  ( ( ( ( E  .+  G ) `  X
)  .X.  ( I `  ( ( E  .+  G ) `  Y
) ) )  e.  ( Base `  S
)  /\  Y  e.  V ) )  -> 
( ( E  .+  G ) `  (
( ( ( E 
.+  G ) `  X )  .X.  (
I `  ( ( E  .+  G ) `  Y ) ) ) 
.x.  Y ) )  =  ( ( ( ( E  .+  G
) `  X )  .X.  ( I `  (
( E  .+  G
) `  Y )
) )  .X.  (
( E  .+  G
) `  Y )
) )
464, 16, 33, 23, 45syl112anc 1230 . . . . . 6  |-  ( ph  ->  ( ( E  .+  G ) `  (
( ( ( E 
.+  G ) `  X )  .X.  (
I `  ( ( E  .+  G ) `  Y ) ) ) 
.x.  Y ) )  =  ( ( ( ( E  .+  G
) `  X )  .X.  ( I `  (
( E  .+  G
) `  Y )
) )  .X.  (
( E  .+  G
) `  Y )
) )
4717, 31ringass 17410 . . . . . . . 8  |-  ( ( S  e.  Ring  /\  (
( ( E  .+  G ) `  X
)  e.  ( Base `  S )  /\  (
I `  ( ( E  .+  G ) `  Y ) )  e.  ( Base `  S
)  /\  ( ( E  .+  G ) `  Y )  e.  (
Base `  S )
) )  ->  (
( ( ( E 
.+  G ) `  X )  .X.  (
I `  ( ( E  .+  G ) `  Y ) ) ) 
.X.  ( ( E 
.+  G ) `  Y ) )  =  ( ( ( E 
.+  G ) `  X )  .X.  (
( I `  (
( E  .+  G
) `  Y )
)  .X.  ( ( E  .+  G ) `  Y ) ) ) )
4810, 20, 30, 25, 47syl13anc 1228 . . . . . . 7  |-  ( ph  ->  ( ( ( ( E  .+  G ) `
 X )  .X.  ( I `  (
( E  .+  G
) `  Y )
) )  .X.  (
( E  .+  G
) `  Y )
)  =  ( ( ( E  .+  G
) `  X )  .X.  ( ( I `  ( ( E  .+  G ) `  Y
) )  .X.  (
( E  .+  G
) `  Y )
) ) )
49 eqid 2454 . . . . . . . . . 10  |-  ( 1r
`  S )  =  ( 1r `  S
)
5017, 27, 31, 49, 28drnginvrl 17610 . . . . . . . . 9  |-  ( ( S  e.  DivRing  /\  (
( E  .+  G
) `  Y )  e.  ( Base `  S
)  /\  ( ( E  .+  G ) `  Y )  =/=  .0.  )  ->  ( ( I `
 ( ( E 
.+  G ) `  Y ) )  .X.  ( ( E  .+  G ) `  Y
) )  =  ( 1r `  S ) )
5122, 25, 26, 50syl3anc 1226 . . . . . . . 8  |-  ( ph  ->  ( ( I `  ( ( E  .+  G ) `  Y
) )  .X.  (
( E  .+  G
) `  Y )
)  =  ( 1r
`  S ) )
5251oveq2d 6286 . . . . . . 7  |-  ( ph  ->  ( ( ( E 
.+  G ) `  X )  .X.  (
( I `  (
( E  .+  G
) `  Y )
)  .X.  ( ( E  .+  G ) `  Y ) ) )  =  ( ( ( E  .+  G ) `
 X )  .X.  ( 1r `  S ) ) )
5348, 52eqtrd 2495 . . . . . 6  |-  ( ph  ->  ( ( ( ( E  .+  G ) `
 X )  .X.  ( I `  (
( E  .+  G
) `  Y )
) )  .X.  (
( E  .+  G
) `  Y )
)  =  ( ( ( E  .+  G
) `  X )  .X.  ( 1r `  S
) ) )
5417, 31, 49ringridm 17418 . . . . . . 7  |-  ( ( S  e.  Ring  /\  (
( E  .+  G
) `  X )  e.  ( Base `  S
) )  ->  (
( ( E  .+  G ) `  X
)  .X.  ( 1r `  S ) )  =  ( ( E  .+  G ) `  X
) )
5510, 20, 54syl2anc 659 . . . . . 6  |-  ( ph  ->  ( ( ( E 
.+  G ) `  X )  .X.  ( 1r `  S ) )  =  ( ( E 
.+  G ) `  X ) )
5646, 53, 553eqtrd 2499 . . . . 5  |-  ( ph  ->  ( ( E  .+  G ) `  (
( ( ( E 
.+  G ) `  X )  .X.  (
I `  ( ( E  .+  G ) `  Y ) ) ) 
.x.  Y ) )  =  ( ( E 
.+  G ) `  X ) )
5756oveq2d 6286 . . . 4  |-  ( ph  ->  ( ( ( E 
.+  G ) `  X ) ( -g `  S ) ( ( E  .+  G ) `
 ( ( ( ( E  .+  G
) `  X )  .X.  ( I `  (
( E  .+  G
) `  Y )
) )  .x.  Y
) ) )  =  ( ( ( E 
.+  G ) `  X ) ( -g `  S ) ( ( E  .+  G ) `
 X ) ) )
58 ringgrp 17398 . . . . . 6  |-  ( S  e.  Ring  ->  S  e. 
Grp )
5910, 58syl 16 . . . . 5  |-  ( ph  ->  S  e.  Grp )
6017, 27, 42grpsubid 16321 . . . . 5  |-  ( ( S  e.  Grp  /\  ( ( E  .+  G ) `  X
)  e.  ( Base `  S ) )  -> 
( ( ( E 
.+  G ) `  X ) ( -g `  S ) ( ( E  .+  G ) `
 X ) )  =  .0.  )
6159, 20, 60syl2anc 659 . . . 4  |-  ( ph  ->  ( ( ( E 
.+  G ) `  X ) ( -g `  S ) ( ( E  .+  G ) `
 X ) )  =  .0.  )
6244, 57, 613eqtrd 2499 . . 3  |-  ( ph  ->  ( ( E  .+  G ) `  ( X  .-  ( ( ( ( E  .+  G
) `  X )  .X.  ( I `  (
( E  .+  G
) `  Y )
) )  .x.  Y
) ) )  =  .0.  )
6341, 62syl5eq 2507 . 2  |-  ( ph  ->  ( ( E  .+  G ) `  B
)  =  .0.  )
6440, 63jca 530 1  |-  ( ph  ->  ( B  e.  V  /\  ( ( E  .+  G ) `  B
)  =  .0.  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   ` cfv 5570  (class class class)co 6270   Basecbs 14716   +g cplusg 14784   .rcmulr 14785  Scalarcsca 14787   .scvsca 14788   0gc0g 14929   Grpcgrp 16252   -gcsg 16254   1rcur 17348   Ringcrg 17393   invrcinvr 17515   DivRingcdr 17591   LModclmod 17707   LVecclvec 17943  LFnlclfn 35179  LDualcld 35245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-tpos 6947  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-sca 14800  df-vsca 14801  df-0g 14931  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-grp 16256  df-minusg 16257  df-sbg 16258  df-cmn 16999  df-abl 17000  df-mgp 17337  df-ur 17349  df-ring 17395  df-oppr 17467  df-dvdsr 17485  df-unit 17486  df-invr 17516  df-drng 17593  df-lmod 17709  df-lvec 17944  df-lfl 35180  df-ldual 35246
This theorem is referenced by:  lclkrlem2o  37645  lclkrlem2q  37647
  Copyright terms: Public domain W3C validator