MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islss3 Structured version   Visualization version   GIF version

Theorem islss3 18780
Description: A linear subspace of a module is a subset which is a module in its own right. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
islss3.x 𝑋 = (𝑊s 𝑈)
islss3.v 𝑉 = (Base‘𝑊)
islss3.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
islss3 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈𝑉𝑋 ∈ LMod)))

Proof of Theorem islss3
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islss3.v . . . . 5 𝑉 = (Base‘𝑊)
2 islss3.s . . . . 5 𝑆 = (LSubSp‘𝑊)
31, 2lssss 18758 . . . 4 (𝑈𝑆𝑈𝑉)
43adantl 481 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈𝑉)
5 islss3.x . . . . . . 7 𝑋 = (𝑊s 𝑈)
65, 1ressbas2 15758 . . . . . 6 (𝑈𝑉𝑈 = (Base‘𝑋))
76adantl 481 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 = (Base‘𝑋))
83, 7sylan2 490 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (Base‘𝑋))
9 eqid 2610 . . . . . 6 (+g𝑊) = (+g𝑊)
105, 9ressplusg 15818 . . . . 5 (𝑈𝑆 → (+g𝑊) = (+g𝑋))
1110adantl 481 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (+g𝑊) = (+g𝑋))
12 eqid 2610 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
135, 12resssca 15854 . . . . 5 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
1413adantl 481 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (Scalar‘𝑊) = (Scalar‘𝑋))
15 eqid 2610 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
165, 15ressvsca 15855 . . . . 5 (𝑈𝑆 → ( ·𝑠𝑊) = ( ·𝑠𝑋))
1716adantl 481 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ( ·𝑠𝑊) = ( ·𝑠𝑋))
18 eqidd 2611 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
19 eqidd 2611 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)))
20 eqidd 2611 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)))
21 eqidd 2611 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)))
2212lmodring 18694 . . . . 5 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
2322adantr 480 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (Scalar‘𝑊) ∈ Ring)
242lsssubg 18778 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
255subggrp 17420 . . . . 5 (𝑈 ∈ (SubGrp‘𝑊) → 𝑋 ∈ Grp)
2624, 25syl 17 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ Grp)
27 eqid 2610 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2812, 15, 27, 2lssvscl 18776 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈)) → (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑈)
29283impb 1252 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈) → (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑈)
30 simpll 786 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑊 ∈ LMod)
31 simpr1 1060 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
323ad2antlr 759 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑈𝑉)
33 simpr2 1061 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑎𝑈)
3432, 33sseldd 3569 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑎𝑉)
35 simpr3 1062 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑏𝑈)
3632, 35sseldd 3569 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑏𝑉)
371, 9, 12, 15, 27lmodvsdi 18709 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → (𝑥( ·𝑠𝑊)(𝑎(+g𝑊)𝑏)) = ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)(𝑥( ·𝑠𝑊)𝑏)))
3830, 31, 34, 36, 37syl13anc 1320 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑥( ·𝑠𝑊)(𝑎(+g𝑊)𝑏)) = ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)(𝑥( ·𝑠𝑊)𝑏)))
39 simpll 786 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑊 ∈ LMod)
40 simpr1 1060 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
41 simpr2 1061 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
423ad2antlr 759 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑈𝑉)
43 simpr3 1062 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑏𝑈)
4442, 43sseldd 3569 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑏𝑉)
45 eqid 2610 . . . . . 6 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
461, 9, 12, 15, 27, 45lmodvsdir 18710 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑉)) → ((𝑥(+g‘(Scalar‘𝑊))𝑎)( ·𝑠𝑊)𝑏) = ((𝑥( ·𝑠𝑊)𝑏)(+g𝑊)(𝑎( ·𝑠𝑊)𝑏)))
4739, 40, 41, 44, 46syl13anc 1320 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → ((𝑥(+g‘(Scalar‘𝑊))𝑎)( ·𝑠𝑊)𝑏) = ((𝑥( ·𝑠𝑊)𝑏)(+g𝑊)(𝑎( ·𝑠𝑊)𝑏)))
48 eqid 2610 . . . . . 6 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
491, 12, 15, 27, 48lmodvsass 18711 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑉)) → ((𝑥(.r‘(Scalar‘𝑊))𝑎)( ·𝑠𝑊)𝑏) = (𝑥( ·𝑠𝑊)(𝑎( ·𝑠𝑊)𝑏)))
5039, 40, 41, 44, 49syl13anc 1320 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → ((𝑥(.r‘(Scalar‘𝑊))𝑎)( ·𝑠𝑊)𝑏) = (𝑥( ·𝑠𝑊)(𝑎( ·𝑠𝑊)𝑏)))
514sselda 3568 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑈) → 𝑥𝑉)
52 eqid 2610 . . . . . . 7 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
531, 12, 15, 52lmodvs1 18714 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑥𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑥) = 𝑥)
5453adantlr 747 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑥) = 𝑥)
5551, 54syldan 486 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑈) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑥) = 𝑥)
568, 11, 14, 17, 18, 19, 20, 21, 23, 26, 29, 38, 47, 50, 55islmodd 18692 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
574, 56jca 553 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑈𝑉𝑋 ∈ LMod))
58 simprl 790 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑈𝑉)
5958, 6syl 17 . . 3 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑈 = (Base‘𝑋))
60 fvex 6113 . . . . . . 7 (Base‘𝑋) ∈ V
6159, 60syl6eqel 2696 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑈 ∈ V)
625, 12resssca 15854 . . . . . 6 (𝑈 ∈ V → (Scalar‘𝑊) = (Scalar‘𝑋))
6361, 62syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Scalar‘𝑊) = (Scalar‘𝑋))
6463eqcomd 2616 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Scalar‘𝑋) = (Scalar‘𝑊))
65 eqidd 2611 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋)))
661a1i 11 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑉 = (Base‘𝑊))
675, 9ressplusg 15818 . . . . . 6 (𝑈 ∈ V → (+g𝑊) = (+g𝑋))
6861, 67syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (+g𝑊) = (+g𝑋))
6968eqcomd 2616 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (+g𝑋) = (+g𝑊))
705, 15ressvsca 15855 . . . . . 6 (𝑈 ∈ V → ( ·𝑠𝑊) = ( ·𝑠𝑋))
7161, 70syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → ( ·𝑠𝑊) = ( ·𝑠𝑋))
7271eqcomd 2616 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → ( ·𝑠𝑋) = ( ·𝑠𝑊))
732a1i 11 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑆 = (LSubSp‘𝑊))
7459, 58eqsstr3d 3603 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘𝑋) ⊆ 𝑉)
75 lmodgrp 18693 . . . . . 6 (𝑋 ∈ LMod → 𝑋 ∈ Grp)
7675ad2antll 761 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑋 ∈ Grp)
77 eqid 2610 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
7877grpbn0 17274 . . . . 5 (𝑋 ∈ Grp → (Base‘𝑋) ≠ ∅)
7976, 78syl 17 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘𝑋) ≠ ∅)
80 eqid 2610 . . . . . . 7 (LSubSp‘𝑋) = (LSubSp‘𝑋)
8177, 80lss1 18760 . . . . . 6 (𝑋 ∈ LMod → (Base‘𝑋) ∈ (LSubSp‘𝑋))
8281ad2antll 761 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘𝑋) ∈ (LSubSp‘𝑋))
83 eqid 2610 . . . . . 6 (Scalar‘𝑋) = (Scalar‘𝑋)
84 eqid 2610 . . . . . 6 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
85 eqid 2610 . . . . . 6 (+g𝑋) = (+g𝑋)
86 eqid 2610 . . . . . 6 ( ·𝑠𝑋) = ( ·𝑠𝑋)
8783, 84, 85, 86, 80lsscl 18764 . . . . 5 (((Base‘𝑋) ∈ (LSubSp‘𝑋) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑎 ∈ (Base‘𝑋) ∧ 𝑏 ∈ (Base‘𝑋))) → ((𝑥( ·𝑠𝑋)𝑎)(+g𝑋)𝑏) ∈ (Base‘𝑋))
8882, 87sylan 487 . . . 4 (((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑎 ∈ (Base‘𝑋) ∧ 𝑏 ∈ (Base‘𝑋))) → ((𝑥( ·𝑠𝑋)𝑎)(+g𝑋)𝑏) ∈ (Base‘𝑋))
8964, 65, 66, 69, 72, 73, 74, 79, 88islssd 18757 . . 3 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘𝑋) ∈ 𝑆)
9059, 89eqeltrd 2688 . 2 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑈𝑆)
9157, 90impbida 873 1 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈𝑉𝑋 ∈ LMod)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  wss 3540  c0 3874  cfv 5804  (class class class)co 6549  Basecbs 15695  s cress 15696  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  Grpcgrp 17245  SubGrpcsubg 17411  1rcur 18324  Ringcrg 18370  LModclmod 18686  LSubSpclss 18753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-sca 15784  df-vsca 15785  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-lss 18754
This theorem is referenced by:  lsslmod  18781  lsslss  18782  issubassa  19145
  Copyright terms: Public domain W3C validator