MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsscl Structured version   Visualization version   GIF version

Theorem lsscl 18764
Description: Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lsscl.f 𝐹 = (Scalar‘𝑊)
lsscl.b 𝐵 = (Base‘𝐹)
lsscl.p + = (+g𝑊)
lsscl.t · = ( ·𝑠𝑊)
lsscl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsscl ((𝑈𝑆 ∧ (𝑍𝐵𝑋𝑈𝑌𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)

Proof of Theorem lsscl
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsscl.f . . . 4 𝐹 = (Scalar‘𝑊)
2 lsscl.b . . . 4 𝐵 = (Base‘𝐹)
3 eqid 2610 . . . 4 (Base‘𝑊) = (Base‘𝑊)
4 lsscl.p . . . 4 + = (+g𝑊)
5 lsscl.t . . . 4 · = ( ·𝑠𝑊)
6 lsscl.s . . . 4 𝑆 = (LSubSp‘𝑊)
71, 2, 3, 4, 5, 6islss 18756 . . 3 (𝑈𝑆 ↔ (𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
87simp3bi 1071 . 2 (𝑈𝑆 → ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)
9 oveq1 6556 . . . . 5 (𝑥 = 𝑍 → (𝑥 · 𝑎) = (𝑍 · 𝑎))
109oveq1d 6564 . . . 4 (𝑥 = 𝑍 → ((𝑥 · 𝑎) + 𝑏) = ((𝑍 · 𝑎) + 𝑏))
1110eleq1d 2672 . . 3 (𝑥 = 𝑍 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑎) + 𝑏) ∈ 𝑈))
12 oveq2 6557 . . . . 5 (𝑎 = 𝑋 → (𝑍 · 𝑎) = (𝑍 · 𝑋))
1312oveq1d 6564 . . . 4 (𝑎 = 𝑋 → ((𝑍 · 𝑎) + 𝑏) = ((𝑍 · 𝑋) + 𝑏))
1413eleq1d 2672 . . 3 (𝑎 = 𝑋 → (((𝑍 · 𝑎) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑋) + 𝑏) ∈ 𝑈))
15 oveq2 6557 . . . 4 (𝑏 = 𝑌 → ((𝑍 · 𝑋) + 𝑏) = ((𝑍 · 𝑋) + 𝑌))
1615eleq1d 2672 . . 3 (𝑏 = 𝑌 → (((𝑍 · 𝑋) + 𝑏) ∈ 𝑈 ↔ ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈))
1711, 14, 16rspc3v 3296 . 2 ((𝑍𝐵𝑋𝑈𝑌𝑈) → (∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈 → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈))
188, 17mpan9 485 1 ((𝑈𝑆 ∧ (𝑍𝐵𝑋𝑈𝑌𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wss 3540  c0 3874  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771   ·𝑠 cvsca 15772  LSubSpclss 18753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-lss 18754
This theorem is referenced by:  lssvsubcl  18765  lssvacl  18775  lssvscl  18776  islss3  18780  lssintcl  18785  lspsolvlem  18963  lbsextlem2  18980  isphld  19818
  Copyright terms: Public domain W3C validator