MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem2 Structured version   Visualization version   GIF version

Theorem lbsextlem2 18980
Description: Lemma for lbsext 18984. Since 𝐴 is a chain (actually, we only need it to be closed under binary union), the union 𝑇 of the spans of each individual element of 𝐴 is a subspace, and it contains all of 𝐴 (except for our target vector 𝑥- we are trying to make 𝑥 a linear combination of all the other vectors in some set from 𝐴). (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v 𝑉 = (Base‘𝑊)
lbsext.j 𝐽 = (LBasis‘𝑊)
lbsext.n 𝑁 = (LSpan‘𝑊)
lbsext.w (𝜑𝑊 ∈ LVec)
lbsext.c (𝜑𝐶𝑉)
lbsext.x (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
lbsext.s 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
lbsext.p 𝑃 = (LSubSp‘𝑊)
lbsext.a (𝜑𝐴𝑆)
lbsext.z (𝜑𝐴 ≠ ∅)
lbsext.r (𝜑 → [] Or 𝐴)
lbsext.t 𝑇 = 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))
Assertion
Ref Expression
lbsextlem2 (𝜑 → (𝑇𝑃 ∧ ( 𝐴 ∖ {𝑥}) ⊆ 𝑇))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑢,𝜑   𝑢,𝑆,𝑥   𝑥,𝑧,𝐶   𝑧,𝑢,𝑁,𝑥   𝑢,𝑉,𝑥,𝑧   𝑢,𝑊,𝑥   𝑢,𝐴,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐶(𝑢)   𝑃(𝑥,𝑧,𝑢)   𝑆(𝑧)   𝑇(𝑥,𝑧,𝑢)   𝐽(𝑧,𝑢)   𝑊(𝑧)

Proof of Theorem lbsextlem2
Dummy variables 𝑚 𝑛 𝑟 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2611 . . 3 (𝜑 → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2611 . . 3 (𝜑 → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 lbsext.v . . . 4 𝑉 = (Base‘𝑊)
43a1i 11 . . 3 (𝜑𝑉 = (Base‘𝑊))
5 eqidd 2611 . . 3 (𝜑 → (+g𝑊) = (+g𝑊))
6 eqidd 2611 . . 3 (𝜑 → ( ·𝑠𝑊) = ( ·𝑠𝑊))
7 lbsext.p . . . 4 𝑃 = (LSubSp‘𝑊)
87a1i 11 . . 3 (𝜑𝑃 = (LSubSp‘𝑊))
9 lbsext.t . . . 4 𝑇 = 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))
10 lbsext.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
11 lveclmod 18927 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
1210, 11syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
13 lbsext.a . . . . . . . . . . 11 (𝜑𝐴𝑆)
14 lbsext.s . . . . . . . . . . . 12 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
15 ssrab2 3650 . . . . . . . . . . . 12 {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} ⊆ 𝒫 𝑉
1614, 15eqsstri 3598 . . . . . . . . . . 11 𝑆 ⊆ 𝒫 𝑉
1713, 16syl6ss 3580 . . . . . . . . . 10 (𝜑𝐴 ⊆ 𝒫 𝑉)
1817sselda 3568 . . . . . . . . 9 ((𝜑𝑢𝐴) → 𝑢 ∈ 𝒫 𝑉)
1918elpwid 4118 . . . . . . . 8 ((𝜑𝑢𝐴) → 𝑢𝑉)
2019ssdifssd 3710 . . . . . . 7 ((𝜑𝑢𝐴) → (𝑢 ∖ {𝑥}) ⊆ 𝑉)
21 lbsext.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
223, 21lspssv 18804 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑢 ∖ {𝑥}) ⊆ 𝑉) → (𝑁‘(𝑢 ∖ {𝑥})) ⊆ 𝑉)
2312, 20, 22syl2an2r 872 . . . . . 6 ((𝜑𝑢𝐴) → (𝑁‘(𝑢 ∖ {𝑥})) ⊆ 𝑉)
2423ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ⊆ 𝑉)
25 iunss 4497 . . . . 5 ( 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ⊆ 𝑉 ↔ ∀𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ⊆ 𝑉)
2624, 25sylibr 223 . . . 4 (𝜑 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ⊆ 𝑉)
279, 26syl5eqss 3612 . . 3 (𝜑𝑇𝑉)
289a1i 11 . . . 4 (𝜑𝑇 = 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})))
29 lbsext.z . . . . . 6 (𝜑𝐴 ≠ ∅)
303, 7, 21lspcl 18797 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑢 ∖ {𝑥}) ⊆ 𝑉) → (𝑁‘(𝑢 ∖ {𝑥})) ∈ 𝑃)
3112, 20, 30syl2an2r 872 . . . . . . . 8 ((𝜑𝑢𝐴) → (𝑁‘(𝑢 ∖ {𝑥})) ∈ 𝑃)
327lssn0 18762 . . . . . . . 8 ((𝑁‘(𝑢 ∖ {𝑥})) ∈ 𝑃 → (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅)
3331, 32syl 17 . . . . . . 7 ((𝜑𝑢𝐴) → (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅)
3433ralrimiva 2949 . . . . . 6 (𝜑 → ∀𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅)
35 r19.2z 4012 . . . . . 6 ((𝐴 ≠ ∅ ∧ ∀𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅) → ∃𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅)
3629, 34, 35syl2anc 691 . . . . 5 (𝜑 → ∃𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅)
37 iunn0 4516 . . . . 5 (∃𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅ ↔ 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅)
3836, 37sylib 207 . . . 4 (𝜑 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ≠ ∅)
3928, 38eqnetrd 2849 . . 3 (𝜑𝑇 ≠ ∅)
409eleq2i 2680 . . . . . . . . 9 (𝑣𝑇𝑣 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})))
41 eliun 4460 . . . . . . . . 9 (𝑣 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑢𝐴 𝑣 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
42 difeq1 3683 . . . . . . . . . . . 12 (𝑢 = 𝑚 → (𝑢 ∖ {𝑥}) = (𝑚 ∖ {𝑥}))
4342fveq2d 6107 . . . . . . . . . . 11 (𝑢 = 𝑚 → (𝑁‘(𝑢 ∖ {𝑥})) = (𝑁‘(𝑚 ∖ {𝑥})))
4443eleq2d 2673 . . . . . . . . . 10 (𝑢 = 𝑚 → (𝑣 ∈ (𝑁‘(𝑢 ∖ {𝑥})) ↔ 𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥}))))
4544cbvrexv 3148 . . . . . . . . 9 (∃𝑢𝐴 𝑣 ∈ (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑚𝐴 𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})))
4640, 41, 453bitri 285 . . . . . . . 8 (𝑣𝑇 ↔ ∃𝑚𝐴 𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})))
479eleq2i 2680 . . . . . . . . 9 (𝑤𝑇𝑤 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})))
48 eliun 4460 . . . . . . . . 9 (𝑤 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑢𝐴 𝑤 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
49 difeq1 3683 . . . . . . . . . . . 12 (𝑢 = 𝑛 → (𝑢 ∖ {𝑥}) = (𝑛 ∖ {𝑥}))
5049fveq2d 6107 . . . . . . . . . . 11 (𝑢 = 𝑛 → (𝑁‘(𝑢 ∖ {𝑥})) = (𝑁‘(𝑛 ∖ {𝑥})))
5150eleq2d 2673 . . . . . . . . . 10 (𝑢 = 𝑛 → (𝑤 ∈ (𝑁‘(𝑢 ∖ {𝑥})) ↔ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))))
5251cbvrexv 3148 . . . . . . . . 9 (∃𝑢𝐴 𝑤 ∈ (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑛𝐴 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))
5347, 48, 523bitri 285 . . . . . . . 8 (𝑤𝑇 ↔ ∃𝑛𝐴 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))
5446, 53anbi12i 729 . . . . . . 7 ((𝑣𝑇𝑤𝑇) ↔ (∃𝑚𝐴 𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ ∃𝑛𝐴 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))))
55 reeanv 3086 . . . . . . 7 (∃𝑚𝐴𝑛𝐴 (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))) ↔ (∃𝑚𝐴 𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ ∃𝑛𝐴 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))))
5654, 55bitr4i 266 . . . . . 6 ((𝑣𝑇𝑤𝑇) ↔ ∃𝑚𝐴𝑛𝐴 (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))))
57 simp1l 1078 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝜑)
58 lbsext.r . . . . . . . . . . . 12 (𝜑 → [] Or 𝐴)
5957, 58syl 17 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → [] Or 𝐴)
60 simp2 1055 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑚𝐴𝑛𝐴))
61 sorpssun 6842 . . . . . . . . . . 11 (( [] Or 𝐴 ∧ (𝑚𝐴𝑛𝐴)) → (𝑚𝑛) ∈ 𝐴)
6259, 60, 61syl2anc 691 . . . . . . . . . 10 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑚𝑛) ∈ 𝐴)
6357, 12syl 17 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝑊 ∈ LMod)
64 elssuni 4403 . . . . . . . . . . . . . . 15 ((𝑚𝑛) ∈ 𝐴 → (𝑚𝑛) ⊆ 𝐴)
6562, 64syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑚𝑛) ⊆ 𝐴)
66 sspwuni 4547 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ 𝒫 𝑉 𝐴𝑉)
6717, 66sylib 207 . . . . . . . . . . . . . . 15 (𝜑 𝐴𝑉)
6857, 67syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝐴𝑉)
6965, 68sstrd 3578 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑚𝑛) ⊆ 𝑉)
7069ssdifssd 3710 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → ((𝑚𝑛) ∖ {𝑥}) ⊆ 𝑉)
713, 7, 21lspcl 18797 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ ((𝑚𝑛) ∖ {𝑥}) ⊆ 𝑉) → (𝑁‘((𝑚𝑛) ∖ {𝑥})) ∈ 𝑃)
7263, 70, 71syl2anc 691 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑁‘((𝑚𝑛) ∖ {𝑥})) ∈ 𝑃)
73 simp1r 1079 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
74 ssun1 3738 . . . . . . . . . . . . . 14 𝑚 ⊆ (𝑚𝑛)
75 ssdif 3707 . . . . . . . . . . . . . 14 (𝑚 ⊆ (𝑚𝑛) → (𝑚 ∖ {𝑥}) ⊆ ((𝑚𝑛) ∖ {𝑥}))
7674, 75mp1i 13 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑚 ∖ {𝑥}) ⊆ ((𝑚𝑛) ∖ {𝑥}))
773, 21lspss 18805 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ ((𝑚𝑛) ∖ {𝑥}) ⊆ 𝑉 ∧ (𝑚 ∖ {𝑥}) ⊆ ((𝑚𝑛) ∖ {𝑥})) → (𝑁‘(𝑚 ∖ {𝑥})) ⊆ (𝑁‘((𝑚𝑛) ∖ {𝑥})))
7863, 70, 76, 77syl3anc 1318 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑁‘(𝑚 ∖ {𝑥})) ⊆ (𝑁‘((𝑚𝑛) ∖ {𝑥})))
79 simp3l 1082 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})))
8078, 79sseldd 3569 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝑣 ∈ (𝑁‘((𝑚𝑛) ∖ {𝑥})))
81 ssun2 3739 . . . . . . . . . . . . . 14 𝑛 ⊆ (𝑚𝑛)
82 ssdif 3707 . . . . . . . . . . . . . 14 (𝑛 ⊆ (𝑚𝑛) → (𝑛 ∖ {𝑥}) ⊆ ((𝑚𝑛) ∖ {𝑥}))
8381, 82mp1i 13 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑛 ∖ {𝑥}) ⊆ ((𝑚𝑛) ∖ {𝑥}))
843, 21lspss 18805 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ ((𝑚𝑛) ∖ {𝑥}) ⊆ 𝑉 ∧ (𝑛 ∖ {𝑥}) ⊆ ((𝑚𝑛) ∖ {𝑥})) → (𝑁‘(𝑛 ∖ {𝑥})) ⊆ (𝑁‘((𝑚𝑛) ∖ {𝑥})))
8563, 70, 83, 84syl3anc 1318 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → (𝑁‘(𝑛 ∖ {𝑥})) ⊆ (𝑁‘((𝑚𝑛) ∖ {𝑥})))
86 simp3r 1083 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))
8785, 86sseldd 3569 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → 𝑤 ∈ (𝑁‘((𝑚𝑛) ∖ {𝑥})))
88 eqid 2610 . . . . . . . . . . . 12 (Scalar‘𝑊) = (Scalar‘𝑊)
89 eqid 2610 . . . . . . . . . . . 12 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
90 eqid 2610 . . . . . . . . . . . 12 (+g𝑊) = (+g𝑊)
91 eqid 2610 . . . . . . . . . . . 12 ( ·𝑠𝑊) = ( ·𝑠𝑊)
9288, 89, 90, 91, 7lsscl 18764 . . . . . . . . . . 11 (((𝑁‘((𝑚𝑛) ∖ {𝑥})) ∈ 𝑃 ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 ∈ (𝑁‘((𝑚𝑛) ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘((𝑚𝑛) ∖ {𝑥})))) → ((𝑟( ·𝑠𝑊)𝑣)(+g𝑊)𝑤) ∈ (𝑁‘((𝑚𝑛) ∖ {𝑥})))
9372, 73, 80, 87, 92syl13anc 1320 . . . . . . . . . 10 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → ((𝑟( ·𝑠𝑊)𝑣)(+g𝑊)𝑤) ∈ (𝑁‘((𝑚𝑛) ∖ {𝑥})))
94 difeq1 3683 . . . . . . . . . . . 12 (𝑢 = (𝑚𝑛) → (𝑢 ∖ {𝑥}) = ((𝑚𝑛) ∖ {𝑥}))
9594fveq2d 6107 . . . . . . . . . . 11 (𝑢 = (𝑚𝑛) → (𝑁‘(𝑢 ∖ {𝑥})) = (𝑁‘((𝑚𝑛) ∖ {𝑥})))
9695eliuni 4462 . . . . . . . . . 10 (((𝑚𝑛) ∈ 𝐴 ∧ ((𝑟( ·𝑠𝑊)𝑣)(+g𝑊)𝑤) ∈ (𝑁‘((𝑚𝑛) ∖ {𝑥}))) → ((𝑟( ·𝑠𝑊)𝑣)(+g𝑊)𝑤) ∈ 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})))
9762, 93, 96syl2anc 691 . . . . . . . . 9 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → ((𝑟( ·𝑠𝑊)𝑣)(+g𝑊)𝑤) ∈ 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})))
9897, 9syl6eleqr 2699 . . . . . . . 8 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴) ∧ (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥})))) → ((𝑟( ·𝑠𝑊)𝑣)(+g𝑊)𝑤) ∈ 𝑇)
99983expia 1259 . . . . . . 7 (((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑚𝐴𝑛𝐴)) → ((𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))) → ((𝑟( ·𝑠𝑊)𝑣)(+g𝑊)𝑤) ∈ 𝑇))
10099rexlimdvva 3020 . . . . . 6 ((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) → (∃𝑚𝐴𝑛𝐴 (𝑣 ∈ (𝑁‘(𝑚 ∖ {𝑥})) ∧ 𝑤 ∈ (𝑁‘(𝑛 ∖ {𝑥}))) → ((𝑟( ·𝑠𝑊)𝑣)(+g𝑊)𝑤) ∈ 𝑇))
10156, 100syl5bi 231 . . . . 5 ((𝜑𝑟 ∈ (Base‘(Scalar‘𝑊))) → ((𝑣𝑇𝑤𝑇) → ((𝑟( ·𝑠𝑊)𝑣)(+g𝑊)𝑤) ∈ 𝑇))
102101exp4b 630 . . . 4 (𝜑 → (𝑟 ∈ (Base‘(Scalar‘𝑊)) → (𝑣𝑇 → (𝑤𝑇 → ((𝑟( ·𝑠𝑊)𝑣)(+g𝑊)𝑤) ∈ 𝑇))))
1031023imp2 1274 . . 3 ((𝜑 ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣𝑇𝑤𝑇)) → ((𝑟( ·𝑠𝑊)𝑣)(+g𝑊)𝑤) ∈ 𝑇)
1041, 2, 4, 5, 6, 8, 27, 39, 103islssd 18757 . 2 (𝜑𝑇𝑃)
105 eldifi 3694 . . . . . . 7 (𝑦 ∈ ( 𝐴 ∖ {𝑥}) → 𝑦 𝐴)
106105adantl 481 . . . . . 6 ((𝜑𝑦 ∈ ( 𝐴 ∖ {𝑥})) → 𝑦 𝐴)
107 eldifn 3695 . . . . . . . . . 10 (𝑦 ∈ ( 𝐴 ∖ {𝑥}) → ¬ 𝑦 ∈ {𝑥})
108107ad2antlr 759 . . . . . . . . 9 (((𝜑𝑦 ∈ ( 𝐴 ∖ {𝑥})) ∧ 𝑢𝐴) → ¬ 𝑦 ∈ {𝑥})
109 eldif 3550 . . . . . . . . . 10 (𝑦 ∈ (𝑢 ∖ {𝑥}) ↔ (𝑦𝑢 ∧ ¬ 𝑦 ∈ {𝑥}))
1103, 21lspssid 18806 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ (𝑢 ∖ {𝑥}) ⊆ 𝑉) → (𝑢 ∖ {𝑥}) ⊆ (𝑁‘(𝑢 ∖ {𝑥})))
11112, 20, 110syl2an2r 872 . . . . . . . . . . . 12 ((𝜑𝑢𝐴) → (𝑢 ∖ {𝑥}) ⊆ (𝑁‘(𝑢 ∖ {𝑥})))
112111adantlr 747 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ( 𝐴 ∖ {𝑥})) ∧ 𝑢𝐴) → (𝑢 ∖ {𝑥}) ⊆ (𝑁‘(𝑢 ∖ {𝑥})))
113112sseld 3567 . . . . . . . . . 10 (((𝜑𝑦 ∈ ( 𝐴 ∖ {𝑥})) ∧ 𝑢𝐴) → (𝑦 ∈ (𝑢 ∖ {𝑥}) → 𝑦 ∈ (𝑁‘(𝑢 ∖ {𝑥}))))
114109, 113syl5bir 232 . . . . . . . . 9 (((𝜑𝑦 ∈ ( 𝐴 ∖ {𝑥})) ∧ 𝑢𝐴) → ((𝑦𝑢 ∧ ¬ 𝑦 ∈ {𝑥}) → 𝑦 ∈ (𝑁‘(𝑢 ∖ {𝑥}))))
115108, 114mpan2d 706 . . . . . . . 8 (((𝜑𝑦 ∈ ( 𝐴 ∖ {𝑥})) ∧ 𝑢𝐴) → (𝑦𝑢𝑦 ∈ (𝑁‘(𝑢 ∖ {𝑥}))))
116115reximdva 3000 . . . . . . 7 ((𝜑𝑦 ∈ ( 𝐴 ∖ {𝑥})) → (∃𝑢𝐴 𝑦𝑢 → ∃𝑢𝐴 𝑦 ∈ (𝑁‘(𝑢 ∖ {𝑥}))))
117 eluni2 4376 . . . . . . 7 (𝑦 𝐴 ↔ ∃𝑢𝐴 𝑦𝑢)
118 eliun 4460 . . . . . . 7 (𝑦 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑢𝐴 𝑦 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
119116, 117, 1183imtr4g 284 . . . . . 6 ((𝜑𝑦 ∈ ( 𝐴 ∖ {𝑥})) → (𝑦 𝐴𝑦 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))))
120106, 119mpd 15 . . . . 5 ((𝜑𝑦 ∈ ( 𝐴 ∖ {𝑥})) → 𝑦 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})))
121120ex 449 . . . 4 (𝜑 → (𝑦 ∈ ( 𝐴 ∖ {𝑥}) → 𝑦 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))))
122121ssrdv 3574 . . 3 (𝜑 → ( 𝐴 ∖ {𝑥}) ⊆ 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})))
123122, 9syl6sseqr 3615 . 2 (𝜑 → ( 𝐴 ∖ {𝑥}) ⊆ 𝑇)
124104, 123jca 553 1 (𝜑 → (𝑇𝑃 ∧ ( 𝐴 ∖ {𝑥}) ⊆ 𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  cdif 3537  cun 3538  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   cuni 4372   ciun 4455   Or wor 4958  cfv 5804  (class class class)co 6549   [] crpss 6834  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771   ·𝑠 cvsca 15772  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792  LBasisclbs 18895  LVecclvec 18923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-rpss 6835  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924
This theorem is referenced by:  lbsextlem3  18981
  Copyright terms: Public domain W3C validator