MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem2 Structured version   Unicode version

Theorem lbsextlem2 17220
Description: Lemma for lbsext 17224. Since  A is a chain (actually, we only need it to be closed under binary union), the union  T of the spans of each individual element of 
A is a subspace, and it contains all of  U. A (except for our target vector  x- we are trying to make  x a linear combination of all the other vectors in some set from  A). (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v  |-  V  =  ( Base `  W
)
lbsext.j  |-  J  =  (LBasis `  W )
lbsext.n  |-  N  =  ( LSpan `  W )
lbsext.w  |-  ( ph  ->  W  e.  LVec )
lbsext.c  |-  ( ph  ->  C  C_  V )
lbsext.x  |-  ( ph  ->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x } ) ) )
lbsext.s  |-  S  =  { z  e.  ~P V  |  ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) ) }
lbsext.p  |-  P  =  ( LSubSp `  W )
lbsext.a  |-  ( ph  ->  A  C_  S )
lbsext.z  |-  ( ph  ->  A  =/=  (/) )
lbsext.r  |-  ( ph  -> [ C.]  Or  A )
lbsext.t  |-  T  = 
U_ u  e.  A  ( N `  ( u 
\  { x }
) )
Assertion
Ref Expression
lbsextlem2  |-  ( ph  ->  ( T  e.  P  /\  ( U. A  \  { x } ) 
C_  T ) )
Distinct variable groups:    x, J    x, u, ph    u, S, x   
x, z, C    z, u, N, x    u, V, x, z    u, W, x    u, A, x, z
Allowed substitution hints:    ph( z)    C( u)    P( x, z, u)    S( z)    T( x, z, u)    J( z, u)    W( z)

Proof of Theorem lbsextlem2
Dummy variables  m  n  r  v  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2439 . . 3  |-  ( ph  ->  (Scalar `  W )  =  (Scalar `  W )
)
2 eqidd 2439 . . 3  |-  ( ph  ->  ( Base `  (Scalar `  W ) )  =  ( Base `  (Scalar `  W ) ) )
3 lbsext.v . . . 4  |-  V  =  ( Base `  W
)
43a1i 11 . . 3  |-  ( ph  ->  V  =  ( Base `  W ) )
5 eqidd 2439 . . 3  |-  ( ph  ->  ( +g  `  W
)  =  ( +g  `  W ) )
6 eqidd 2439 . . 3  |-  ( ph  ->  ( .s `  W
)  =  ( .s
`  W ) )
7 lbsext.p . . . 4  |-  P  =  ( LSubSp `  W )
87a1i 11 . . 3  |-  ( ph  ->  P  =  ( LSubSp `  W ) )
9 lbsext.t . . . 4  |-  T  = 
U_ u  e.  A  ( N `  ( u 
\  { x }
) )
10 lbsext.w . . . . . . . . 9  |-  ( ph  ->  W  e.  LVec )
11 lveclmod 17167 . . . . . . . . 9  |-  ( W  e.  LVec  ->  W  e. 
LMod )
1210, 11syl 16 . . . . . . . 8  |-  ( ph  ->  W  e.  LMod )
1312adantr 465 . . . . . . 7  |-  ( (
ph  /\  u  e.  A )  ->  W  e.  LMod )
14 lbsext.a . . . . . . . . . . 11  |-  ( ph  ->  A  C_  S )
15 lbsext.s . . . . . . . . . . . 12  |-  S  =  { z  e.  ~P V  |  ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) ) }
16 ssrab2 3432 . . . . . . . . . . . 12  |-  { z  e.  ~P V  | 
( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z 
\  { x }
) ) ) } 
C_  ~P V
1715, 16eqsstri 3381 . . . . . . . . . . 11  |-  S  C_  ~P V
1814, 17syl6ss 3363 . . . . . . . . . 10  |-  ( ph  ->  A  C_  ~P V
)
1918sselda 3351 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  A )  ->  u  e.  ~P V )
2019elpwid 3865 . . . . . . . 8  |-  ( (
ph  /\  u  e.  A )  ->  u  C_  V )
2120ssdifssd 3489 . . . . . . 7  |-  ( (
ph  /\  u  e.  A )  ->  (
u  \  { x } )  C_  V
)
22 lbsext.n . . . . . . . 8  |-  N  =  ( LSpan `  W )
233, 22lspssv 17044 . . . . . . 7  |-  ( ( W  e.  LMod  /\  (
u  \  { x } )  C_  V
)  ->  ( N `  ( u  \  {
x } ) ) 
C_  V )
2413, 21, 23syl2anc 661 . . . . . 6  |-  ( (
ph  /\  u  e.  A )  ->  ( N `  ( u  \  { x } ) )  C_  V )
2524ralrimiva 2794 . . . . 5  |-  ( ph  ->  A. u  e.  A  ( N `  ( u 
\  { x }
) )  C_  V
)
26 iunss 4206 . . . . 5  |-  ( U_ u  e.  A  ( N `  ( u  \  { x } ) )  C_  V  <->  A. u  e.  A  ( N `  ( u  \  {
x } ) ) 
C_  V )
2725, 26sylibr 212 . . . 4  |-  ( ph  ->  U_ u  e.  A  ( N `  ( u 
\  { x }
) )  C_  V
)
289, 27syl5eqss 3395 . . 3  |-  ( ph  ->  T  C_  V )
299a1i 11 . . . 4  |-  ( ph  ->  T  =  U_ u  e.  A  ( N `  ( u  \  {
x } ) ) )
30 lbsext.z . . . . . 6  |-  ( ph  ->  A  =/=  (/) )
313, 7, 22lspcl 17037 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  (
u  \  { x } )  C_  V
)  ->  ( N `  ( u  \  {
x } ) )  e.  P )
3213, 21, 31syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  u  e.  A )  ->  ( N `  ( u  \  { x } ) )  e.  P )
337lssn0 17002 . . . . . . . 8  |-  ( ( N `  ( u 
\  { x }
) )  e.  P  ->  ( N `  (
u  \  { x } ) )  =/=  (/) )
3432, 33syl 16 . . . . . . 7  |-  ( (
ph  /\  u  e.  A )  ->  ( N `  ( u  \  { x } ) )  =/=  (/) )
3534ralrimiva 2794 . . . . . 6  |-  ( ph  ->  A. u  e.  A  ( N `  ( u 
\  { x }
) )  =/=  (/) )
36 r19.2z 3764 . . . . . 6  |-  ( ( A  =/=  (/)  /\  A. u  e.  A  ( N `  ( u  \  { x } ) )  =/=  (/) )  ->  E. u  e.  A  ( N `  ( u 
\  { x }
) )  =/=  (/) )
3730, 35, 36syl2anc 661 . . . . 5  |-  ( ph  ->  E. u  e.  A  ( N `  ( u 
\  { x }
) )  =/=  (/) )
38 iunn0 4225 . . . . 5  |-  ( E. u  e.  A  ( N `  ( u 
\  { x }
) )  =/=  (/)  <->  U_ u  e.  A  ( N `  ( u  \  { x } ) )  =/=  (/) )
3937, 38sylib 196 . . . 4  |-  ( ph  ->  U_ u  e.  A  ( N `  ( u 
\  { x }
) )  =/=  (/) )
4029, 39eqnetrd 2621 . . 3  |-  ( ph  ->  T  =/=  (/) )
419eleq2i 2502 . . . . . . . . 9  |-  ( v  e.  T  <->  v  e.  U_ u  e.  A  ( N `  ( u 
\  { x }
) ) )
42 eliun 4170 . . . . . . . . 9  |-  ( v  e.  U_ u  e.  A  ( N `  ( u  \  { x } ) )  <->  E. u  e.  A  v  e.  ( N `  ( u 
\  { x }
) ) )
43 difeq1 3462 . . . . . . . . . . . 12  |-  ( u  =  m  ->  (
u  \  { x } )  =  ( m  \  { x } ) )
4443fveq2d 5690 . . . . . . . . . . 11  |-  ( u  =  m  ->  ( N `  ( u  \  { x } ) )  =  ( N `
 ( m  \  { x } ) ) )
4544eleq2d 2505 . . . . . . . . . 10  |-  ( u  =  m  ->  (
v  e.  ( N `
 ( u  \  { x } ) )  <->  v  e.  ( N `  ( m 
\  { x }
) ) ) )
4645cbvrexv 2943 . . . . . . . . 9  |-  ( E. u  e.  A  v  e.  ( N `  ( u  \  { x } ) )  <->  E. m  e.  A  v  e.  ( N `  ( m 
\  { x }
) ) )
4741, 42, 463bitri 271 . . . . . . . 8  |-  ( v  e.  T  <->  E. m  e.  A  v  e.  ( N `  ( m 
\  { x }
) ) )
489eleq2i 2502 . . . . . . . . 9  |-  ( w  e.  T  <->  w  e.  U_ u  e.  A  ( N `  ( u 
\  { x }
) ) )
49 eliun 4170 . . . . . . . . 9  |-  ( w  e.  U_ u  e.  A  ( N `  ( u  \  { x } ) )  <->  E. u  e.  A  w  e.  ( N `  ( u 
\  { x }
) ) )
50 difeq1 3462 . . . . . . . . . . . 12  |-  ( u  =  n  ->  (
u  \  { x } )  =  ( n  \  { x } ) )
5150fveq2d 5690 . . . . . . . . . . 11  |-  ( u  =  n  ->  ( N `  ( u  \  { x } ) )  =  ( N `
 ( n  \  { x } ) ) )
5251eleq2d 2505 . . . . . . . . . 10  |-  ( u  =  n  ->  (
w  e.  ( N `
 ( u  \  { x } ) )  <->  w  e.  ( N `  ( n  \  { x } ) ) ) )
5352cbvrexv 2943 . . . . . . . . 9  |-  ( E. u  e.  A  w  e.  ( N `  ( u  \  { x } ) )  <->  E. n  e.  A  w  e.  ( N `  ( n 
\  { x }
) ) )
5448, 49, 533bitri 271 . . . . . . . 8  |-  ( w  e.  T  <->  E. n  e.  A  w  e.  ( N `  ( n 
\  { x }
) ) )
5547, 54anbi12i 697 . . . . . . 7  |-  ( ( v  e.  T  /\  w  e.  T )  <->  ( E. m  e.  A  v  e.  ( N `  ( m  \  {
x } ) )  /\  E. n  e.  A  w  e.  ( N `  ( n 
\  { x }
) ) ) )
56 reeanv 2883 . . . . . . 7  |-  ( E. m  e.  A  E. n  e.  A  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) )  <-> 
( E. m  e.  A  v  e.  ( N `  ( m 
\  { x }
) )  /\  E. n  e.  A  w  e.  ( N `  (
n  \  { x } ) ) ) )
5755, 56bitr4i 252 . . . . . 6  |-  ( ( v  e.  T  /\  w  e.  T )  <->  E. m  e.  A  E. n  e.  A  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )
58 simp1l 1012 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  ph )
59 lbsext.r . . . . . . . . . . . . 13  |-  ( ph  -> [ C.]  Or  A )
6058, 59syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  -> [ C.]  Or  A
)
61 simp2 989 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  ( m  e.  A  /\  n  e.  A ) )
62 sorpssun 6362 . . . . . . . . . . . 12  |-  ( ( [
C.]  Or  A  /\  ( m  e.  A  /\  n  e.  A
) )  ->  (
m  u.  n )  e.  A )
6360, 61, 62syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  ( m  u.  n )  e.  A
)
6458, 12syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  W  e.  LMod )
65 elssuni 4116 . . . . . . . . . . . . . . . 16  |-  ( ( m  u.  n )  e.  A  ->  (
m  u.  n ) 
C_  U. A )
6663, 65syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  ( m  u.  n )  C_  U. A
)
67 sspwuni 4251 . . . . . . . . . . . . . . . . 17  |-  ( A 
C_  ~P V  <->  U. A  C_  V )
6818, 67sylib 196 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  U. A  C_  V
)
6958, 68syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  U. A  C_  V )
7066, 69sstrd 3361 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  ( m  u.  n )  C_  V
)
7170ssdifssd 3489 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  ( (
m  u.  n ) 
\  { x }
)  C_  V )
723, 7, 22lspcl 17037 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  (
( m  u.  n
)  \  { x } )  C_  V
)  ->  ( N `  ( ( m  u.  n )  \  {
x } ) )  e.  P )
7364, 71, 72syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  ( N `  ( ( m  u.  n )  \  {
x } ) )  e.  P )
74 simp1r 1013 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  r  e.  ( Base `  (Scalar `  W
) ) )
75 ssun1 3514 . . . . . . . . . . . . . . 15  |-  m  C_  ( m  u.  n
)
76 ssdif 3486 . . . . . . . . . . . . . . 15  |-  ( m 
C_  ( m  u.  n )  ->  (
m  \  { x } )  C_  (
( m  u.  n
)  \  { x } ) )
7775, 76mp1i 12 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  ( m  \  { x } ) 
C_  ( ( m  u.  n )  \  { x } ) )
783, 22lspss 17045 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  (
( m  u.  n
)  \  { x } )  C_  V  /\  ( m  \  {
x } )  C_  ( ( m  u.  n )  \  {
x } ) )  ->  ( N `  ( m  \  { x } ) )  C_  ( N `  ( ( m  u.  n ) 
\  { x }
) ) )
7964, 71, 77, 78syl3anc 1218 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  ( N `  ( m  \  {
x } ) ) 
C_  ( N `  ( ( m  u.  n )  \  {
x } ) ) )
80 simp3l 1016 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  v  e.  ( N `  ( m 
\  { x }
) ) )
8179, 80sseldd 3352 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  v  e.  ( N `  ( ( m  u.  n ) 
\  { x }
) ) )
82 ssun2 3515 . . . . . . . . . . . . . . 15  |-  n  C_  ( m  u.  n
)
83 ssdif 3486 . . . . . . . . . . . . . . 15  |-  ( n 
C_  ( m  u.  n )  ->  (
n  \  { x } )  C_  (
( m  u.  n
)  \  { x } ) )
8482, 83mp1i 12 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  ( n  \  { x } ) 
C_  ( ( m  u.  n )  \  { x } ) )
853, 22lspss 17045 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  (
( m  u.  n
)  \  { x } )  C_  V  /\  ( n  \  {
x } )  C_  ( ( m  u.  n )  \  {
x } ) )  ->  ( N `  ( n  \  { x } ) )  C_  ( N `  ( ( m  u.  n ) 
\  { x }
) ) )
8664, 71, 84, 85syl3anc 1218 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  ( N `  ( n  \  {
x } ) ) 
C_  ( N `  ( ( m  u.  n )  \  {
x } ) ) )
87 simp3r 1017 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  w  e.  ( N `  ( n 
\  { x }
) ) )
8886, 87sseldd 3352 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  w  e.  ( N `  ( ( m  u.  n ) 
\  { x }
) ) )
89 eqid 2438 . . . . . . . . . . . . 13  |-  (Scalar `  W )  =  (Scalar `  W )
90 eqid 2438 . . . . . . . . . . . . 13  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
91 eqid 2438 . . . . . . . . . . . . 13  |-  ( +g  `  W )  =  ( +g  `  W )
92 eqid 2438 . . . . . . . . . . . . 13  |-  ( .s
`  W )  =  ( .s `  W
)
9389, 90, 91, 92, 7lsscl 17004 . . . . . . . . . . . 12  |-  ( ( ( N `  (
( m  u.  n
)  \  { x } ) )  e.  P  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  v  e.  ( N `  ( ( m  u.  n )  \  {
x } ) )  /\  w  e.  ( N `  ( ( m  u.  n ) 
\  { x }
) ) ) )  ->  ( ( r ( .s `  W
) v ) ( +g  `  W ) w )  e.  ( N `  ( ( m  u.  n ) 
\  { x }
) ) )
9473, 74, 81, 88, 93syl13anc 1220 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  ( (
r ( .s `  W ) v ) ( +g  `  W
) w )  e.  ( N `  (
( m  u.  n
)  \  { x } ) ) )
95 difeq1 3462 . . . . . . . . . . . . . 14  |-  ( u  =  ( m  u.  n )  ->  (
u  \  { x } )  =  ( ( m  u.  n
)  \  { x } ) )
9695fveq2d 5690 . . . . . . . . . . . . 13  |-  ( u  =  ( m  u.  n )  ->  ( N `  ( u  \  { x } ) )  =  ( N `
 ( ( m  u.  n )  \  { x } ) ) )
9796eleq2d 2505 . . . . . . . . . . . 12  |-  ( u  =  ( m  u.  n )  ->  (
( ( r ( .s `  W ) v ) ( +g  `  W ) w )  e.  ( N `  ( u  \  { x } ) )  <->  ( (
r ( .s `  W ) v ) ( +g  `  W
) w )  e.  ( N `  (
( m  u.  n
)  \  { x } ) ) ) )
9897rspcev 3068 . . . . . . . . . . 11  |-  ( ( ( m  u.  n
)  e.  A  /\  ( ( r ( .s `  W ) v ) ( +g  `  W ) w )  e.  ( N `  ( ( m  u.  n )  \  {
x } ) ) )  ->  E. u  e.  A  ( (
r ( .s `  W ) v ) ( +g  `  W
) w )  e.  ( N `  (
u  \  { x } ) ) )
9963, 94, 98syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  E. u  e.  A  ( (
r ( .s `  W ) v ) ( +g  `  W
) w )  e.  ( N `  (
u  \  { x } ) ) )
100 eliun 4170 . . . . . . . . . 10  |-  ( ( ( r ( .s
`  W ) v ) ( +g  `  W
) w )  e. 
U_ u  e.  A  ( N `  ( u 
\  { x }
) )  <->  E. u  e.  A  ( (
r ( .s `  W ) v ) ( +g  `  W
) w )  e.  ( N `  (
u  \  { x } ) ) )
10199, 100sylibr 212 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  ( (
r ( .s `  W ) v ) ( +g  `  W
) w )  e. 
U_ u  e.  A  ( N `  ( u 
\  { x }
) ) )
102101, 9syl6eleqr 2529 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A )  /\  (
v  e.  ( N `
 ( m  \  { x } ) )  /\  w  e.  ( N `  (
n  \  { x } ) ) ) )  ->  ( (
r ( .s `  W ) v ) ( +g  `  W
) w )  e.  T )
1031023expia 1189 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  ( Base `  (Scalar `  W ) ) )  /\  ( m  e.  A  /\  n  e.  A ) )  -> 
( ( v  e.  ( N `  (
m  \  { x } ) )  /\  w  e.  ( N `  ( n  \  {
x } ) ) )  ->  ( (
r ( .s `  W ) v ) ( +g  `  W
) w )  e.  T ) )
104103rexlimdvva 2843 . . . . . 6  |-  ( (
ph  /\  r  e.  ( Base `  (Scalar `  W
) ) )  -> 
( E. m  e.  A  E. n  e.  A  ( v  e.  ( N `  (
m  \  { x } ) )  /\  w  e.  ( N `  ( n  \  {
x } ) ) )  ->  ( (
r ( .s `  W ) v ) ( +g  `  W
) w )  e.  T ) )
10557, 104syl5bi 217 . . . . 5  |-  ( (
ph  /\  r  e.  ( Base `  (Scalar `  W
) ) )  -> 
( ( v  e.  T  /\  w  e.  T )  ->  (
( r ( .s
`  W ) v ) ( +g  `  W
) w )  e.  T ) )
106105exp4b 607 . . . 4  |-  ( ph  ->  ( r  e.  (
Base `  (Scalar `  W
) )  ->  (
v  e.  T  -> 
( w  e.  T  ->  ( ( r ( .s `  W ) v ) ( +g  `  W ) w )  e.  T ) ) ) )
1071063imp2 1202 . . 3  |-  ( (
ph  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  v  e.  T  /\  w  e.  T )
)  ->  ( (
r ( .s `  W ) v ) ( +g  `  W
) w )  e.  T )
1081, 2, 4, 5, 6, 8, 28, 40, 107islssd 16997 . 2  |-  ( ph  ->  T  e.  P )
109 eldifi 3473 . . . . . . 7  |-  ( y  e.  ( U. A  \  { x } )  ->  y  e.  U. A )
110109adantl 466 . . . . . 6  |-  ( (
ph  /\  y  e.  ( U. A  \  {
x } ) )  ->  y  e.  U. A )
111 eldifn 3474 . . . . . . . . . 10  |-  ( y  e.  ( U. A  \  { x } )  ->  -.  y  e.  { x } )
112111ad2antlr 726 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( U. A  \  { x } ) )  /\  u  e.  A )  ->  -.  y  e.  { x } )
113 eldif 3333 . . . . . . . . . 10  |-  ( y  e.  ( u  \  { x } )  <-> 
( y  e.  u  /\  -.  y  e.  {
x } ) )
1143, 22lspssid 17046 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  (
u  \  { x } )  C_  V
)  ->  ( u  \  { x } ) 
C_  ( N `  ( u  \  { x } ) ) )
11513, 21, 114syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  A )  ->  (
u  \  { x } )  C_  ( N `  ( u  \  { x } ) ) )
116115adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( U. A  \  { x } ) )  /\  u  e.  A )  ->  (
u  \  { x } )  C_  ( N `  ( u  \  { x } ) ) )
117116sseld 3350 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( U. A  \  { x } ) )  /\  u  e.  A )  ->  (
y  e.  ( u 
\  { x }
)  ->  y  e.  ( N `  ( u 
\  { x }
) ) ) )
118113, 117syl5bir 218 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( U. A  \  { x } ) )  /\  u  e.  A )  ->  (
( y  e.  u  /\  -.  y  e.  {
x } )  -> 
y  e.  ( N `
 ( u  \  { x } ) ) ) )
119112, 118mpan2d 674 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( U. A  \  { x } ) )  /\  u  e.  A )  ->  (
y  e.  u  -> 
y  e.  ( N `
 ( u  \  { x } ) ) ) )
120119reximdva 2823 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( U. A  \  {
x } ) )  ->  ( E. u  e.  A  y  e.  u  ->  E. u  e.  A  y  e.  ( N `  ( u  \  {
x } ) ) ) )
121 eluni2 4090 . . . . . . 7  |-  ( y  e.  U. A  <->  E. u  e.  A  y  e.  u )
122 eliun 4170 . . . . . . 7  |-  ( y  e.  U_ u  e.  A  ( N `  ( u  \  { x } ) )  <->  E. u  e.  A  y  e.  ( N `  ( u 
\  { x }
) ) )
123120, 121, 1223imtr4g 270 . . . . . 6  |-  ( (
ph  /\  y  e.  ( U. A  \  {
x } ) )  ->  ( y  e. 
U. A  ->  y  e.  U_ u  e.  A  ( N `  ( u 
\  { x }
) ) ) )
124110, 123mpd 15 . . . . 5  |-  ( (
ph  /\  y  e.  ( U. A  \  {
x } ) )  ->  y  e.  U_ u  e.  A  ( N `  ( u  \  { x } ) ) )
125124ex 434 . . . 4  |-  ( ph  ->  ( y  e.  ( U. A  \  {
x } )  -> 
y  e.  U_ u  e.  A  ( N `  ( u  \  {
x } ) ) ) )
126125ssrdv 3357 . . 3  |-  ( ph  ->  ( U. A  \  { x } ) 
C_  U_ u  e.  A  ( N `  ( u 
\  { x }
) ) )
127126, 9syl6sseqr 3398 . 2  |-  ( ph  ->  ( U. A  \  { x } ) 
C_  T )
128108, 127jca 532 1  |-  ( ph  ->  ( T  e.  P  /\  ( U. A  \  { x } ) 
C_  T ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   E.wrex 2711   {crab 2714    \ cdif 3320    u. cun 3321    C_ wss 3323   (/)c0 3632   ~Pcpw 3855   {csn 3872   U.cuni 4086   U_ciun 4166    Or wor 4635   ` cfv 5413  (class class class)co 6086   [ C.] crpss 6354   Basecbs 14166   +g cplusg 14230  Scalarcsca 14233   .scvsca 14234   LModclmod 16928   LSubSpclss 16993   LSpanclspn 17032  LBasisclbs 17135   LVecclvec 17163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-rpss 6355  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-2 10372  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-plusg 14243  df-0g 14372  df-mnd 15407  df-grp 15536  df-minusg 15537  df-sbg 15538  df-mgp 16582  df-ur 16594  df-rng 16637  df-lmod 16930  df-lss 16994  df-lsp 17033  df-lvec 17164
This theorem is referenced by:  lbsextlem3  17221
  Copyright terms: Public domain W3C validator