MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem3 Structured version   Visualization version   GIF version

Theorem lbsextlem3 18981
Description: Lemma for lbsext 18984. A chain in 𝑆 has an upper bound in 𝑆. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v 𝑉 = (Base‘𝑊)
lbsext.j 𝐽 = (LBasis‘𝑊)
lbsext.n 𝑁 = (LSpan‘𝑊)
lbsext.w (𝜑𝑊 ∈ LVec)
lbsext.c (𝜑𝐶𝑉)
lbsext.x (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
lbsext.s 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
lbsext.p 𝑃 = (LSubSp‘𝑊)
lbsext.a (𝜑𝐴𝑆)
lbsext.z (𝜑𝐴 ≠ ∅)
lbsext.r (𝜑 → [] Or 𝐴)
lbsext.t 𝑇 = 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))
Assertion
Ref Expression
lbsextlem3 (𝜑 𝐴𝑆)
Distinct variable groups:   𝑥,𝐽   𝑥,𝑢,𝜑   𝑢,𝑆,𝑥   𝑥,𝑧,𝐶   𝑧,𝑢,𝑁,𝑥   𝑢,𝑉,𝑥,𝑧   𝑢,𝑊,𝑥   𝑢,𝐴,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐶(𝑢)   𝑃(𝑥,𝑧,𝑢)   𝑆(𝑧)   𝑇(𝑥,𝑧,𝑢)   𝐽(𝑧,𝑢)   𝑊(𝑧)

Proof of Theorem lbsextlem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lbsext.a . . . . 5 (𝜑𝐴𝑆)
2 lbsext.s . . . . . 6 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
3 ssrab2 3650 . . . . . 6 {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} ⊆ 𝒫 𝑉
42, 3eqsstri 3598 . . . . 5 𝑆 ⊆ 𝒫 𝑉
51, 4syl6ss 3580 . . . 4 (𝜑𝐴 ⊆ 𝒫 𝑉)
6 sspwuni 4547 . . . 4 (𝐴 ⊆ 𝒫 𝑉 𝐴𝑉)
75, 6sylib 207 . . 3 (𝜑 𝐴𝑉)
8 lbsext.v . . . . 5 𝑉 = (Base‘𝑊)
9 fvex 6113 . . . . 5 (Base‘𝑊) ∈ V
108, 9eqeltri 2684 . . . 4 𝑉 ∈ V
1110elpw2 4755 . . 3 ( 𝐴 ∈ 𝒫 𝑉 𝐴𝑉)
127, 11sylibr 223 . 2 (𝜑 𝐴 ∈ 𝒫 𝑉)
13 ssintub 4430 . . . . 5 𝐶 {𝑧 ∈ 𝒫 𝑉𝐶𝑧}
14 simpl 472 . . . . . . . . . 10 ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) → 𝐶𝑧)
1514a1i 11 . . . . . . . . 9 (𝑧 ∈ 𝒫 𝑉 → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) → 𝐶𝑧))
1615ss2rabi 3647 . . . . . . . 8 {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧}
172, 16eqsstri 3598 . . . . . . 7 𝑆 ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧}
181, 17syl6ss 3580 . . . . . 6 (𝜑𝐴 ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧})
19 intss 4433 . . . . . 6 (𝐴 ⊆ {𝑧 ∈ 𝒫 𝑉𝐶𝑧} → {𝑧 ∈ 𝒫 𝑉𝐶𝑧} ⊆ 𝐴)
2018, 19syl 17 . . . . 5 (𝜑 {𝑧 ∈ 𝒫 𝑉𝐶𝑧} ⊆ 𝐴)
2113, 20syl5ss 3579 . . . 4 (𝜑𝐶 𝐴)
22 lbsext.z . . . . 5 (𝜑𝐴 ≠ ∅)
23 intssuni 4434 . . . . 5 (𝐴 ≠ ∅ → 𝐴 𝐴)
2422, 23syl 17 . . . 4 (𝜑 𝐴 𝐴)
2521, 24sstrd 3578 . . 3 (𝜑𝐶 𝐴)
26 eluni2 4376 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦𝐴 𝑥𝑦)
27 simpll1 1093 . . . . . . . . . . . 12 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝜑)
28 lbsext.w . . . . . . . . . . . . 13 (𝜑𝑊 ∈ LVec)
29 lveclmod 18927 . . . . . . . . . . . . 13 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
3028, 29syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ LMod)
3127, 30syl 17 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑊 ∈ LMod)
3227, 1syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝐴𝑆)
33 lbsext.r . . . . . . . . . . . . . . . . 17 (𝜑 → [] Or 𝐴)
3427, 33syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → [] Or 𝐴)
35 simpll2 1094 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑦𝐴)
36 simplr 788 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑢𝐴)
37 sorpssun 6842 . . . . . . . . . . . . . . . 16 (( [] Or 𝐴 ∧ (𝑦𝐴𝑢𝐴)) → (𝑦𝑢) ∈ 𝐴)
3834, 35, 36, 37syl12anc 1316 . . . . . . . . . . . . . . 15 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ∈ 𝐴)
3932, 38sseldd 3569 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ∈ 𝑆)
404, 39sseldi 3566 . . . . . . . . . . . . 13 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ∈ 𝒫 𝑉)
4140elpwid 4118 . . . . . . . . . . . 12 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑦𝑢) ⊆ 𝑉)
4241ssdifssd 3710 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → ((𝑦𝑢) ∖ {𝑥}) ⊆ 𝑉)
43 ssun2 3739 . . . . . . . . . . . 12 𝑢 ⊆ (𝑦𝑢)
44 ssdif 3707 . . . . . . . . . . . 12 (𝑢 ⊆ (𝑦𝑢) → (𝑢 ∖ {𝑥}) ⊆ ((𝑦𝑢) ∖ {𝑥}))
4543, 44mp1i 13 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑢 ∖ {𝑥}) ⊆ ((𝑦𝑢) ∖ {𝑥}))
46 lbsext.n . . . . . . . . . . . 12 𝑁 = (LSpan‘𝑊)
478, 46lspss 18805 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ((𝑦𝑢) ∖ {𝑥}) ⊆ 𝑉 ∧ (𝑢 ∖ {𝑥}) ⊆ ((𝑦𝑢) ∖ {𝑥})) → (𝑁‘(𝑢 ∖ {𝑥})) ⊆ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
4831, 42, 45, 47syl3anc 1318 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → (𝑁‘(𝑢 ∖ {𝑥})) ⊆ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
49 simpr 476 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
5048, 49sseldd 3569 . . . . . . . . 9 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
51 sseq2 3590 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑢) → (𝐶𝑧𝐶 ⊆ (𝑦𝑢)))
52 difeq1 3683 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑦𝑢) → (𝑧 ∖ {𝑥}) = ((𝑦𝑢) ∖ {𝑥}))
5352fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑦𝑢) → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘((𝑦𝑢) ∖ {𝑥})))
5453eleq2d 2673 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑦𝑢) → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
5554notbid 307 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦𝑢) → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
5655raleqbi1dv 3123 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦𝑢) → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
5751, 56anbi12d 743 . . . . . . . . . . . . . 14 (𝑧 = (𝑦𝑢) → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 ⊆ (𝑦𝑢) ∧ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))))
5857, 2elrab2 3333 . . . . . . . . . . . . 13 ((𝑦𝑢) ∈ 𝑆 ↔ ((𝑦𝑢) ∈ 𝒫 𝑉 ∧ (𝐶 ⊆ (𝑦𝑢) ∧ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))))
5958simprbi 479 . . . . . . . . . . . 12 ((𝑦𝑢) ∈ 𝑆 → (𝐶 ⊆ (𝑦𝑢) ∧ ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
6059simprd 478 . . . . . . . . . . 11 ((𝑦𝑢) ∈ 𝑆 → ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
6139, 60syl 17 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → ∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
62 simpll3 1095 . . . . . . . . . . 11 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥𝑦)
63 elun1 3742 . . . . . . . . . . 11 (𝑥𝑦𝑥 ∈ (𝑦𝑢))
6462, 63syl 17 . . . . . . . . . 10 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → 𝑥 ∈ (𝑦𝑢))
65 rsp 2913 . . . . . . . . . 10 (∀𝑥 ∈ (𝑦𝑢) ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})) → (𝑥 ∈ (𝑦𝑢) → ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥}))))
6661, 64, 65sylc 63 . . . . . . . . 9 ((((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) ∧ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))) → ¬ 𝑥 ∈ (𝑁‘((𝑦𝑢) ∖ {𝑥})))
6750, 66pm2.65da 598 . . . . . . . 8 (((𝜑𝑦𝐴𝑥𝑦) ∧ 𝑢𝐴) → ¬ 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
6867nrexdv 2984 . . . . . . 7 ((𝜑𝑦𝐴𝑥𝑦) → ¬ ∃𝑢𝐴 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
69 lbsext.j . . . . . . . . . . . . . . . 16 𝐽 = (LBasis‘𝑊)
70 lbsext.c . . . . . . . . . . . . . . . 16 (𝜑𝐶𝑉)
71 lbsext.x . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
72 lbsext.p . . . . . . . . . . . . . . . 16 𝑃 = (LSubSp‘𝑊)
73 lbsext.t . . . . . . . . . . . . . . . 16 𝑇 = 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))
748, 69, 46, 28, 70, 71, 2, 72, 1, 22, 33, 73lbsextlem2 18980 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇𝑃 ∧ ( 𝐴 ∖ {𝑥}) ⊆ 𝑇))
7574simpld 474 . . . . . . . . . . . . . 14 (𝜑𝑇𝑃)
768, 72lssss 18758 . . . . . . . . . . . . . 14 (𝑇𝑃𝑇𝑉)
7775, 76syl 17 . . . . . . . . . . . . 13 (𝜑𝑇𝑉)
7874simprd 478 . . . . . . . . . . . . 13 (𝜑 → ( 𝐴 ∖ {𝑥}) ⊆ 𝑇)
798, 46lspss 18805 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑇𝑉 ∧ ( 𝐴 ∖ {𝑥}) ⊆ 𝑇) → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ (𝑁𝑇))
8030, 77, 78, 79syl3anc 1318 . . . . . . . . . . . 12 (𝜑 → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ (𝑁𝑇))
8172, 46lspid 18803 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑇𝑃) → (𝑁𝑇) = 𝑇)
8230, 75, 81syl2anc 691 . . . . . . . . . . . 12 (𝜑 → (𝑁𝑇) = 𝑇)
8380, 82sseqtrd 3604 . . . . . . . . . . 11 (𝜑 → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ 𝑇)
84833ad2ant1 1075 . . . . . . . . . 10 ((𝜑𝑦𝐴𝑥𝑦) → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ 𝑇)
8584, 73syl6sseq 3614 . . . . . . . . 9 ((𝜑𝑦𝐴𝑥𝑦) → (𝑁‘( 𝐴 ∖ {𝑥})) ⊆ 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})))
8685sseld 3567 . . . . . . . 8 ((𝜑𝑦𝐴𝑥𝑦) → (𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})) → 𝑥 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥}))))
87 eliun 4460 . . . . . . . 8 (𝑥 𝑢𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ↔ ∃𝑢𝐴 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥})))
8886, 87syl6ib 240 . . . . . . 7 ((𝜑𝑦𝐴𝑥𝑦) → (𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})) → ∃𝑢𝐴 𝑥 ∈ (𝑁‘(𝑢 ∖ {𝑥}))))
8968, 88mtod 188 . . . . . 6 ((𝜑𝑦𝐴𝑥𝑦) → ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))
9089rexlimdv3a 3015 . . . . 5 (𝜑 → (∃𝑦𝐴 𝑥𝑦 → ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9126, 90syl5bi 231 . . . 4 (𝜑 → (𝑥 𝐴 → ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9291ralrimiv 2948 . . 3 (𝜑 → ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))
9325, 92jca 553 . 2 (𝜑 → (𝐶 𝐴 ∧ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
94 sseq2 3590 . . . 4 (𝑧 = 𝐴 → (𝐶𝑧𝐶 𝐴))
95 difeq1 3683 . . . . . . . 8 (𝑧 = 𝐴 → (𝑧 ∖ {𝑥}) = ( 𝐴 ∖ {𝑥}))
9695fveq2d 6107 . . . . . . 7 (𝑧 = 𝐴 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘( 𝐴 ∖ {𝑥})))
9796eleq2d 2673 . . . . . 6 (𝑧 = 𝐴 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9897notbid 307 . . . . 5 (𝑧 = 𝐴 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
9998raleqbi1dv 3123 . . . 4 (𝑧 = 𝐴 → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥}))))
10094, 99anbi12d 743 . . 3 (𝑧 = 𝐴 → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 𝐴 ∧ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))))
101100, 2elrab2 3333 . 2 ( 𝐴𝑆 ↔ ( 𝐴 ∈ 𝒫 𝑉 ∧ (𝐶 𝐴 ∧ ∀𝑥 𝐴 ¬ 𝑥 ∈ (𝑁‘( 𝐴 ∖ {𝑥})))))
10212, 93, 101sylanbrc 695 1 (𝜑 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  cun 3538  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   cuni 4372   cint 4410   ciun 4455   Or wor 4958  cfv 5804   [] crpss 6834  Basecbs 15695  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792  LBasisclbs 18895  LVecclvec 18923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-rpss 6835  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924
This theorem is referenced by:  lbsextlem4  18982
  Copyright terms: Public domain W3C validator