MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islss3 Structured version   Unicode version

Theorem islss3 17476
Description: A linear subspace of a module is a subset which is a module in its own right. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
islss3.x  |-  X  =  ( Ws  U )
islss3.v  |-  V  =  ( Base `  W
)
islss3.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
islss3  |-  ( W  e.  LMod  ->  ( U  e.  S  <->  ( U  C_  V  /\  X  e. 
LMod ) ) )

Proof of Theorem islss3
Dummy variables  a 
b  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islss3.v . . . . 5  |-  V  =  ( Base `  W
)
2 islss3.s . . . . 5  |-  S  =  ( LSubSp `  W )
31, 2lssss 17454 . . . 4  |-  ( U  e.  S  ->  U  C_  V )
43adantl 466 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  C_  V )
5 islss3.x . . . . . . 7  |-  X  =  ( Ws  U )
65, 1ressbas2 14562 . . . . . 6  |-  ( U 
C_  V  ->  U  =  ( Base `  X
) )
76adantl 466 . . . . 5  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  =  ( Base `  X
) )
83, 7sylan2 474 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( Base `  X
) )
9 eqid 2441 . . . . . 6  |-  ( +g  `  W )  =  ( +g  `  W )
105, 9ressplusg 14613 . . . . 5  |-  ( U  e.  S  ->  ( +g  `  W )  =  ( +g  `  X
) )
1110adantl 466 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( +g  `  W )  =  ( +g  `  X
) )
12 eqid 2441 . . . . . 6  |-  (Scalar `  W )  =  (Scalar `  W )
135, 12resssca 14649 . . . . 5  |-  ( U  e.  S  ->  (Scalar `  W )  =  (Scalar `  X ) )
1413adantl 466 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (Scalar `  W )  =  (Scalar `  X ) )
15 eqid 2441 . . . . . 6  |-  ( .s
`  W )  =  ( .s `  W
)
165, 15ressvsca 14650 . . . . 5  |-  ( U  e.  S  ->  ( .s `  W )  =  ( .s `  X
) )
1716adantl 466 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( .s `  W )  =  ( .s `  X
) )
18 eqidd 2442 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( Base `  (Scalar `  W
) )  =  (
Base `  (Scalar `  W
) ) )
19 eqidd 2442 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( +g  `  (Scalar `  W
) )  =  ( +g  `  (Scalar `  W ) ) )
20 eqidd 2442 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( .r `  (Scalar `  W
) )  =  ( .r `  (Scalar `  W ) ) )
21 eqidd 2442 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( 1r `  (Scalar `  W
) )  =  ( 1r `  (Scalar `  W ) ) )
2212lmodring 17391 . . . . 5  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Ring )
2322adantr 465 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (Scalar `  W )  e.  Ring )
242lsssubg 17474 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
255subggrp 16075 . . . . 5  |-  ( U  e.  (SubGrp `  W
)  ->  X  e.  Grp )
2624, 25syl 16 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  e.  Grp )
27 eqid 2441 . . . . . 6  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
2812, 15, 27, 2lssvscl 17472 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U )
)  ->  ( x
( .s `  W
) a )  e.  U )
29283impb 1191 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  (
Base `  (Scalar `  W
) )  /\  a  e.  U )  ->  (
x ( .s `  W ) a )  e.  U )
30 simpll 753 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  W  e.  LMod )
31 simpr1 1001 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  x  e.  ( Base `  (Scalar `  W
) ) )
323ad2antlr 726 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  U  C_  V
)
33 simpr2 1002 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  a  e.  U )
3432, 33sseldd 3488 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  a  e.  V )
35 simpr3 1003 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  b  e.  U )
3632, 35sseldd 3488 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  b  e.  V )
371, 9, 12, 15, 27lmodvsdi 17406 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  (
x ( .s `  W ) ( a ( +g  `  W
) b ) )  =  ( ( x ( .s `  W
) a ) ( +g  `  W ) ( x ( .s
`  W ) b ) ) )
3830, 31, 34, 36, 37syl13anc 1229 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  ( x
( .s `  W
) ( a ( +g  `  W ) b ) )  =  ( ( x ( .s `  W ) a ) ( +g  `  W ) ( x ( .s `  W
) b ) ) )
39 simpll 753 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  ->  W  e.  LMod )
40 simpr1 1001 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  ->  x  e.  ( Base `  (Scalar `  W )
) )
41 simpr2 1002 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
a  e.  ( Base `  (Scalar `  W )
) )
423ad2antlr 726 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  ->  U  C_  V )
43 simpr3 1003 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
b  e.  U )
4442, 43sseldd 3488 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
b  e.  V )
45 eqid 2441 . . . . . 6  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
461, 9, 12, 15, 27, 45lmodvsdir 17407 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  ( Base `  (Scalar `  W
) )  /\  b  e.  V ) )  -> 
( ( x ( +g  `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( ( x ( .s `  W
) b ) ( +g  `  W ) ( a ( .s
`  W ) b ) ) )
4739, 40, 41, 44, 46syl13anc 1229 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
( ( x ( +g  `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( ( x ( .s `  W
) b ) ( +g  `  W ) ( a ( .s
`  W ) b ) ) )
48 eqid 2441 . . . . . 6  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
491, 12, 15, 27, 48lmodvsass 17408 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  ( Base `  (Scalar `  W
) )  /\  b  e.  V ) )  -> 
( ( x ( .r `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( x ( .s `  W ) ( a ( .s
`  W ) b ) ) )
5039, 40, 41, 44, 49syl13anc 1229 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
( ( x ( .r `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( x ( .s `  W ) ( a ( .s
`  W ) b ) ) )
514sselda 3487 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  x  e.  V )
52 eqid 2441 . . . . . . 7  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
531, 12, 15, 52lmodvs1 17411 . . . . . 6  |-  ( ( W  e.  LMod  /\  x  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) x )  =  x )
5453adantlr 714 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  V
)  ->  ( ( 1r `  (Scalar `  W
) ) ( .s
`  W ) x )  =  x )
5551, 54syldan 470 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  ( ( 1r `  (Scalar `  W
) ) ( .s
`  W ) x )  =  x )
568, 11, 14, 17, 18, 19, 20, 21, 23, 26, 29, 38, 47, 50, 55islmodd 17389 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  e.  LMod )
574, 56jca 532 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( U  C_  V  /\  X  e.  LMod ) )
58 simprl 755 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  C_  V )
5958, 6syl 16 . . 3  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  =  ( Base `  X ) )
60 fvex 5863 . . . . . . 7  |-  ( Base `  X )  e.  _V
6159, 60syl6eqel 2537 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  e.  _V )
625, 12resssca 14649 . . . . . 6  |-  ( U  e.  _V  ->  (Scalar `  W )  =  (Scalar `  X ) )
6361, 62syl 16 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
(Scalar `  W )  =  (Scalar `  X )
)
6463eqcomd 2449 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
(Scalar `  X )  =  (Scalar `  W )
)
65 eqidd 2442 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  (Scalar `  X
) )  =  (
Base `  (Scalar `  X
) ) )
661a1i 11 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  V  =  ( Base `  W ) )
675, 9ressplusg 14613 . . . . . 6  |-  ( U  e.  _V  ->  ( +g  `  W )  =  ( +g  `  X
) )
6861, 67syl 16 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( +g  `  W )  =  ( +g  `  X
) )
6968eqcomd 2449 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( +g  `  X )  =  ( +g  `  W
) )
705, 15ressvsca 14650 . . . . . 6  |-  ( U  e.  _V  ->  ( .s `  W )  =  ( .s `  X
) )
7161, 70syl 16 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( .s `  W
)  =  ( .s
`  X ) )
7271eqcomd 2449 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( .s `  X
)  =  ( .s
`  W ) )
732a1i 11 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  S  =  ( LSubSp `  W ) )
7459, 58eqsstr3d 3522 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  X )  C_  V )
75 lmodgrp 17390 . . . . . 6  |-  ( X  e.  LMod  ->  X  e. 
Grp )
7675ad2antll 728 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  X  e.  Grp )
77 eqid 2441 . . . . . 6  |-  ( Base `  X )  =  (
Base `  X )
7877grpbn0 15950 . . . . 5  |-  ( X  e.  Grp  ->  ( Base `  X )  =/=  (/) )
7976, 78syl 16 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  X )  =/=  (/) )
80 eqid 2441 . . . . . . 7  |-  ( LSubSp `  X )  =  (
LSubSp `  X )
8177, 80lss1 17456 . . . . . 6  |-  ( X  e.  LMod  ->  ( Base `  X )  e.  (
LSubSp `  X ) )
8281ad2antll 728 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  X )  e.  ( LSubSp `  X )
)
83 eqid 2441 . . . . . 6  |-  (Scalar `  X )  =  (Scalar `  X )
84 eqid 2441 . . . . . 6  |-  ( Base `  (Scalar `  X )
)  =  ( Base `  (Scalar `  X )
)
85 eqid 2441 . . . . . 6  |-  ( +g  `  X )  =  ( +g  `  X )
86 eqid 2441 . . . . . 6  |-  ( .s
`  X )  =  ( .s `  X
)
8783, 84, 85, 86, 80lsscl 17460 . . . . 5  |-  ( ( ( Base `  X
)  e.  ( LSubSp `  X )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X ) ) )  ->  ( (
x ( .s `  X ) a ) ( +g  `  X
) b )  e.  ( Base `  X
) )
8882, 87sylan 471 . . . 4  |-  ( ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X ) ) )  ->  ( (
x ( .s `  X ) a ) ( +g  `  X
) b )  e.  ( Base `  X
) )
8964, 65, 66, 69, 72, 73, 74, 79, 88islssd 17453 . . 3  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  X )  e.  S )
9059, 89eqeltrd 2529 . 2  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  e.  S )
9157, 90impbida 830 1  |-  ( W  e.  LMod  ->  ( U  e.  S  <->  ( U  C_  V  /\  X  e. 
LMod ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802    =/= wne 2636   _Vcvv 3093    C_ wss 3459   (/)c0 3768   ` cfv 5575  (class class class)co 6278   Basecbs 14506   ↾s cress 14507   +g cplusg 14571   .rcmulr 14572  Scalarcsca 14574   .scvsca 14575   Grpcgrp 15924  SubGrpcsubg 16066   1rcur 17024   Ringcrg 17069   LModclmod 17383   LSubSpclss 17449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4545  ax-sep 4555  ax-nul 4563  ax-pow 4612  ax-pr 4673  ax-un 6574  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3419  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-pss 3475  df-nul 3769  df-if 3924  df-pw 3996  df-sn 4012  df-pr 4014  df-tp 4016  df-op 4018  df-uni 4232  df-iun 4314  df-br 4435  df-opab 4493  df-mpt 4494  df-tr 4528  df-eprel 4778  df-id 4782  df-po 4787  df-so 4788  df-fr 4825  df-we 4827  df-ord 4868  df-on 4869  df-lim 4870  df-suc 4871  df-xp 4992  df-rel 4993  df-cnv 4994  df-co 4995  df-dm 4996  df-rn 4997  df-res 4998  df-ima 4999  df-iota 5538  df-fun 5577  df-fn 5578  df-f 5579  df-f1 5580  df-fo 5581  df-f1o 5582  df-fv 5583  df-riota 6239  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6683  df-1st 6782  df-2nd 6783  df-recs 7041  df-rdg 7075  df-er 7310  df-en 7516  df-dom 7517  df-sdom 7518  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9809  df-neg 9810  df-nn 10540  df-2 10597  df-3 10598  df-4 10599  df-5 10600  df-6 10601  df-ndx 14509  df-slot 14510  df-base 14511  df-sets 14512  df-ress 14513  df-plusg 14584  df-sca 14587  df-vsca 14588  df-0g 14713  df-mgm 15743  df-sgrp 15782  df-mnd 15792  df-grp 15928  df-minusg 15929  df-sbg 15930  df-subg 16069  df-mgp 17013  df-ur 17025  df-ring 17071  df-lmod 17385  df-lss 17450
This theorem is referenced by:  lsslmod  17477  lsslss  17478  issubassa  17844
  Copyright terms: Public domain W3C validator