Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumshftm Structured version   Visualization version   GIF version

Theorem fsumshftm 14355
 Description: Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumrev.1 (𝜑𝐾 ∈ ℤ)
fsumrev.2 (𝜑𝑀 ∈ ℤ)
fsumrev.3 (𝜑𝑁 ∈ ℤ)
fsumrev.4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumshftm.5 (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵)
Assertion
Ref Expression
fsumshftm (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)

Proof of Theorem fsumshftm
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2751 . . 3 𝑚𝐴
2 nfcsb1v 3515 . . 3 𝑗𝑚 / 𝑗𝐴
3 csbeq1a 3508 . . 3 (𝑗 = 𝑚𝐴 = 𝑚 / 𝑗𝐴)
41, 2, 3cbvsumi 14275 . 2 Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑚 ∈ (𝑀...𝑁)𝑚 / 𝑗𝐴
5 fsumrev.1 . . . . 5 (𝜑𝐾 ∈ ℤ)
65znegcld 11360 . . . 4 (𝜑 → -𝐾 ∈ ℤ)
7 fsumrev.2 . . . 4 (𝜑𝑀 ∈ ℤ)
8 fsumrev.3 . . . 4 (𝜑𝑁 ∈ ℤ)
9 fsumrev.4 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
109ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑗 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
112nfel1 2765 . . . . . 6 𝑗𝑚 / 𝑗𝐴 ∈ ℂ
123eleq1d 2672 . . . . . 6 (𝑗 = 𝑚 → (𝐴 ∈ ℂ ↔ 𝑚 / 𝑗𝐴 ∈ ℂ))
1311, 12rspc 3276 . . . . 5 (𝑚 ∈ (𝑀...𝑁) → (∀𝑗 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → 𝑚 / 𝑗𝐴 ∈ ℂ))
1410, 13mpan9 485 . . . 4 ((𝜑𝑚 ∈ (𝑀...𝑁)) → 𝑚 / 𝑗𝐴 ∈ ℂ)
15 csbeq1 3502 . . . 4 (𝑚 = (𝑘 − -𝐾) → 𝑚 / 𝑗𝐴 = (𝑘 − -𝐾) / 𝑗𝐴)
166, 7, 8, 14, 15fsumshft 14354 . . 3 (𝜑 → Σ𝑚 ∈ (𝑀...𝑁)𝑚 / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))(𝑘 − -𝐾) / 𝑗𝐴)
177zcnd 11359 . . . . . 6 (𝜑𝑀 ∈ ℂ)
185zcnd 11359 . . . . . 6 (𝜑𝐾 ∈ ℂ)
1917, 18negsubd 10277 . . . . 5 (𝜑 → (𝑀 + -𝐾) = (𝑀𝐾))
208zcnd 11359 . . . . . 6 (𝜑𝑁 ∈ ℂ)
2120, 18negsubd 10277 . . . . 5 (𝜑 → (𝑁 + -𝐾) = (𝑁𝐾))
2219, 21oveq12d 6567 . . . 4 (𝜑 → ((𝑀 + -𝐾)...(𝑁 + -𝐾)) = ((𝑀𝐾)...(𝑁𝐾)))
2322sumeq1d 14279 . . 3 (𝜑 → Σ𝑘 ∈ ((𝑀 + -𝐾)...(𝑁 + -𝐾))(𝑘 − -𝐾) / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))(𝑘 − -𝐾) / 𝑗𝐴)
24 elfzelz 12213 . . . . . . . 8 (𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾)) → 𝑘 ∈ ℤ)
2524zcnd 11359 . . . . . . 7 (𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾)) → 𝑘 ∈ ℂ)
26 subneg 10209 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑘 − -𝐾) = (𝑘 + 𝐾))
2725, 18, 26syl2anr 494 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → (𝑘 − -𝐾) = (𝑘 + 𝐾))
2827csbeq1d 3506 . . . . 5 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → (𝑘 − -𝐾) / 𝑗𝐴 = (𝑘 + 𝐾) / 𝑗𝐴)
29 ovex 6577 . . . . . 6 (𝑘 + 𝐾) ∈ V
30 fsumshftm.5 . . . . . 6 (𝑗 = (𝑘 + 𝐾) → 𝐴 = 𝐵)
3129, 30csbie 3525 . . . . 5 (𝑘 + 𝐾) / 𝑗𝐴 = 𝐵
3228, 31syl6eq 2660 . . . 4 ((𝜑𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))) → (𝑘 − -𝐾) / 𝑗𝐴 = 𝐵)
3332sumeq2dv 14281 . . 3 (𝜑 → Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))(𝑘 − -𝐾) / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))𝐵)
3416, 23, 333eqtrd 2648 . 2 (𝜑 → Σ𝑚 ∈ (𝑀...𝑁)𝑚 / 𝑗𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))𝐵)
354, 34syl5eq 2656 1 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀𝐾)...(𝑁𝐾))𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ⦋csb 3499  (class class class)co 6549  ℂcc 9813   + caddc 9818   − cmin 10145  -cneg 10146  ℤcz 11254  ...cfz 12197  Σcsu 14264 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265 This theorem is referenced by:  telfsumo  14375  fsumparts  14379  arisum  14431  geo2sum  14443  ovolicc2lem4  23095  uniioombllem3  23159  dvply1  23843  pserdvlem2  23986  advlogexp  24201  dchrisumlem1  24978  pntpbnd2  25076  pwdif  40039  nn0sumshdiglemA  42211  nn0sumshdiglemB  42212
 Copyright terms: Public domain W3C validator