Step | Hyp | Ref
| Expression |
1 | | fourierdlem14.v |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) |
2 | | fourierdlem14.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℕ) |
3 | | fourierdlem14.p |
. . . . . . . . . . . 12
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚
(0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝‘𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
4 | 3 | fourierdlem2 39002 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
5 | 2, 4 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
6 | 1, 5 | mpbid 221 |
. . . . . . . . 9
⊢ (𝜑 → (𝑉 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))))) |
7 | 6 | simpld 474 |
. . . . . . . 8
⊢ (𝜑 → 𝑉 ∈ (ℝ ↑𝑚
(0...𝑀))) |
8 | | elmapi 7765 |
. . . . . . . 8
⊢ (𝑉 ∈ (ℝ
↑𝑚 (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ) |
9 | 7, 8 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑉:(0...𝑀)⟶ℝ) |
10 | 9 | fnvinran 38196 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑉‘𝑖) ∈ ℝ) |
11 | | fourierdlem14.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℝ) |
12 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ) |
13 | 10, 12 | resubcld 10337 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑉‘𝑖) − 𝑋) ∈ ℝ) |
14 | | fourierdlem14.q |
. . . . 5
⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) |
15 | 13, 14 | fmptd 6292 |
. . . 4
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
16 | | reex 9906 |
. . . . . 6
⊢ ℝ
∈ V |
17 | 16 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈
V) |
18 | | ovex 6577 |
. . . . . 6
⊢
(0...𝑀) ∈
V |
19 | 18 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0...𝑀) ∈ V) |
20 | 17, 19 | elmapd 7758 |
. . . 4
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ)) |
21 | 15, 20 | mpbird 246 |
. . 3
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑𝑚
(0...𝑀))) |
22 | 14 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋))) |
23 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑖 = 0 → (𝑉‘𝑖) = (𝑉‘0)) |
24 | 23 | oveq1d 6564 |
. . . . . . 7
⊢ (𝑖 = 0 → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘0) − 𝑋)) |
25 | 24 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘0) − 𝑋)) |
26 | | 0zd 11266 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
ℤ) |
27 | 2 | nnzd 11357 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
28 | 26, 27, 26 | 3jca 1235 |
. . . . . . . 8
⊢ (𝜑 → (0 ∈ ℤ ∧
𝑀 ∈ ℤ ∧ 0
∈ ℤ)) |
29 | | 0le0 10987 |
. . . . . . . . 9
⊢ 0 ≤
0 |
30 | 29 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ 0) |
31 | | 0red 9920 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
ℝ) |
32 | 2 | nnred 10912 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℝ) |
33 | 2 | nngt0d 10941 |
. . . . . . . . 9
⊢ (𝜑 → 0 < 𝑀) |
34 | 31, 32, 33 | ltled 10064 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ 𝑀) |
35 | 28, 30, 34 | jca32 556 |
. . . . . . 7
⊢ (𝜑 → ((0 ∈ ℤ ∧
𝑀 ∈ ℤ ∧ 0
∈ ℤ) ∧ (0 ≤ 0 ∧ 0 ≤ 𝑀))) |
36 | | elfz2 12204 |
. . . . . . 7
⊢ (0 ∈
(0...𝑀) ↔ ((0 ∈
ℤ ∧ 𝑀 ∈
ℤ ∧ 0 ∈ ℤ) ∧ (0 ≤ 0 ∧ 0 ≤ 𝑀))) |
37 | 35, 36 | sylibr 223 |
. . . . . 6
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
38 | 9, 37 | ffvelrnd 6268 |
. . . . . . 7
⊢ (𝜑 → (𝑉‘0) ∈ ℝ) |
39 | 38, 11 | resubcld 10337 |
. . . . . 6
⊢ (𝜑 → ((𝑉‘0) − 𝑋) ∈ ℝ) |
40 | 22, 25, 37, 39 | fvmptd 6197 |
. . . . 5
⊢ (𝜑 → (𝑄‘0) = ((𝑉‘0) − 𝑋)) |
41 | 6 | simprd 478 |
. . . . . . . 8
⊢ (𝜑 → (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))) |
42 | 41 | simpld 474 |
. . . . . . 7
⊢ (𝜑 → ((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋))) |
43 | 42 | simpld 474 |
. . . . . 6
⊢ (𝜑 → (𝑉‘0) = (𝐴 + 𝑋)) |
44 | 43 | oveq1d 6564 |
. . . . 5
⊢ (𝜑 → ((𝑉‘0) − 𝑋) = ((𝐴 + 𝑋) − 𝑋)) |
45 | | fourierdlem14.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
46 | 45 | recnd 9947 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℂ) |
47 | 11 | recnd 9947 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℂ) |
48 | 46, 47 | pncand 10272 |
. . . . 5
⊢ (𝜑 → ((𝐴 + 𝑋) − 𝑋) = 𝐴) |
49 | 40, 44, 48 | 3eqtrd 2648 |
. . . 4
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
50 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑖 = 𝑀 → (𝑉‘𝑖) = (𝑉‘𝑀)) |
51 | 50 | oveq1d 6564 |
. . . . . . 7
⊢ (𝑖 = 𝑀 → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝑀) − 𝑋)) |
52 | 51 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 𝑀) → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝑀) − 𝑋)) |
53 | 26, 27, 27 | 3jca 1235 |
. . . . . . . 8
⊢ (𝜑 → (0 ∈ ℤ ∧
𝑀 ∈ ℤ ∧
𝑀 ∈
ℤ)) |
54 | 32 | leidd 10473 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ≤ 𝑀) |
55 | 53, 34, 54 | jca32 556 |
. . . . . . 7
⊢ (𝜑 → ((0 ∈ ℤ ∧
𝑀 ∈ ℤ ∧
𝑀 ∈ ℤ) ∧ (0
≤ 𝑀 ∧ 𝑀 ≤ 𝑀))) |
56 | | elfz2 12204 |
. . . . . . 7
⊢ (𝑀 ∈ (0...𝑀) ↔ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤
𝑀 ∧ 𝑀 ≤ 𝑀))) |
57 | 55, 56 | sylibr 223 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
58 | 9, 57 | ffvelrnd 6268 |
. . . . . . 7
⊢ (𝜑 → (𝑉‘𝑀) ∈ ℝ) |
59 | 58, 11 | resubcld 10337 |
. . . . . 6
⊢ (𝜑 → ((𝑉‘𝑀) − 𝑋) ∈ ℝ) |
60 | 22, 52, 57, 59 | fvmptd 6197 |
. . . . 5
⊢ (𝜑 → (𝑄‘𝑀) = ((𝑉‘𝑀) − 𝑋)) |
61 | 42 | simprd 478 |
. . . . . 6
⊢ (𝜑 → (𝑉‘𝑀) = (𝐵 + 𝑋)) |
62 | 61 | oveq1d 6564 |
. . . . 5
⊢ (𝜑 → ((𝑉‘𝑀) − 𝑋) = ((𝐵 + 𝑋) − 𝑋)) |
63 | | fourierdlem14.2 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
64 | 63 | recnd 9947 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℂ) |
65 | 64, 47 | pncand 10272 |
. . . . 5
⊢ (𝜑 → ((𝐵 + 𝑋) − 𝑋) = 𝐵) |
66 | 60, 62, 65 | 3eqtrd 2648 |
. . . 4
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
67 | 49, 66 | jca 553 |
. . 3
⊢ (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵)) |
68 | | elfzofz 12354 |
. . . . . . 7
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
69 | 68, 10 | sylan2 490 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) ∈ ℝ) |
70 | 9 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ) |
71 | | fzofzp1 12431 |
. . . . . . . 8
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
72 | 71 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
73 | 70, 72 | ffvelrnd 6268 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ) |
74 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ) |
75 | 41 | simprd 478 |
. . . . . . 7
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))) |
76 | 75 | r19.21bi 2916 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) < (𝑉‘(𝑖 + 1))) |
77 | 69, 73, 74, 76 | ltsub1dd 10518 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘𝑖) − 𝑋) < ((𝑉‘(𝑖 + 1)) − 𝑋)) |
78 | 68 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
79 | 68, 13 | sylan2 490 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘𝑖) − 𝑋) ∈ ℝ) |
80 | 14 | fvmpt2 6200 |
. . . . . 6
⊢ ((𝑖 ∈ (0...𝑀) ∧ ((𝑉‘𝑖) − 𝑋) ∈ ℝ) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
81 | 78, 79, 80 | syl2anc 691 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
82 | | fveq2 6103 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝑉‘𝑖) = (𝑉‘𝑗)) |
83 | 82 | oveq1d 6564 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝑗) − 𝑋)) |
84 | 83 | cbvmptv 4678 |
. . . . . . . 8
⊢ (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋)) |
85 | 14, 84 | eqtri 2632 |
. . . . . . 7
⊢ 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋)) |
86 | 85 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋))) |
87 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑗 = (𝑖 + 1) → (𝑉‘𝑗) = (𝑉‘(𝑖 + 1))) |
88 | 87 | oveq1d 6564 |
. . . . . . 7
⊢ (𝑗 = (𝑖 + 1) → ((𝑉‘𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
89 | 88 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉‘𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
90 | 73, 74 | resubcld 10337 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ) |
91 | 86, 89, 72, 90 | fvmptd 6197 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
92 | 77, 81, 91 | 3brtr4d 4615 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
93 | 92 | ralrimiva 2949 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
94 | 21, 67, 93 | jca32 556 |
. 2
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
95 | | fourierdlem14.o |
. . . 4
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
96 | 95 | fourierdlem2 39002 |
. . 3
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑂‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
97 | 2, 96 | syl 17 |
. 2
⊢ (𝜑 → (𝑄 ∈ (𝑂‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
98 | 94, 97 | mpbird 246 |
1
⊢ (𝜑 → 𝑄 ∈ (𝑂‘𝑀)) |