Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvmptdiv Structured version   Visualization version   GIF version

Theorem dvmptdiv 38807
Description: Function-builder for derivative, quotient rule. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvmptdiv.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptdiv.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptdiv.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptdiv.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptdiv.c ((𝜑𝑥𝑋) → 𝐶 ∈ (ℂ ∖ {0}))
dvmptdiv.d ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
dvmptdiv.dc (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
Assertion
Ref Expression
dvmptdiv (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐶))) = (𝑥𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2))))
Distinct variable groups:   𝑥,𝑆   𝑥,𝑉   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem dvmptdiv
StepHypRef Expression
1 dvmptdiv.a . . . . 5 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
2 dvmptdiv.c . . . . . 6 ((𝜑𝑥𝑋) → 𝐶 ∈ (ℂ ∖ {0}))
32eldifad 3552 . . . . 5 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
4 eldifsn 4260 . . . . . . 7 (𝐶 ∈ (ℂ ∖ {0}) ↔ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
52, 4sylib 207 . . . . . 6 ((𝜑𝑥𝑋) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
65simprd 478 . . . . 5 ((𝜑𝑥𝑋) → 𝐶 ≠ 0)
71, 3, 6divrecd 10683 . . . 4 ((𝜑𝑥𝑋) → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶)))
87mpteq2dva 4672 . . 3 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐶)) = (𝑥𝑋 ↦ (𝐴 · (1 / 𝐶))))
98oveq2d 6565 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐶))) = (𝑆 D (𝑥𝑋 ↦ (𝐴 · (1 / 𝐶)))))
10 dvmptdiv.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
11 dvmptdiv.b . . 3 ((𝜑𝑥𝑋) → 𝐵𝑉)
12 dvmptdiv.da . . 3 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
133, 6reccld 10673 . . 3 ((𝜑𝑥𝑋) → (1 / 𝐶) ∈ ℂ)
14 1cnd 9935 . . . . . 6 ((𝜑𝑥𝑋) → 1 ∈ ℂ)
15 dvmptdiv.d . . . . . 6 ((𝜑𝑥𝑋) → 𝐷 ∈ ℂ)
1614, 15mulcld 9939 . . . . 5 ((𝜑𝑥𝑋) → (1 · 𝐷) ∈ ℂ)
173sqcld 12868 . . . . 5 ((𝜑𝑥𝑋) → (𝐶↑2) ∈ ℂ)
186neneqd 2787 . . . . . . 7 ((𝜑𝑥𝑋) → ¬ 𝐶 = 0)
19 sqeq0 12789 . . . . . . . 8 (𝐶 ∈ ℂ → ((𝐶↑2) = 0 ↔ 𝐶 = 0))
203, 19syl 17 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐶↑2) = 0 ↔ 𝐶 = 0))
2118, 20mtbird 314 . . . . . 6 ((𝜑𝑥𝑋) → ¬ (𝐶↑2) = 0)
2221neqned 2789 . . . . 5 ((𝜑𝑥𝑋) → (𝐶↑2) ≠ 0)
2316, 17, 22divcld 10680 . . . 4 ((𝜑𝑥𝑋) → ((1 · 𝐷) / (𝐶↑2)) ∈ ℂ)
2423negcld 10258 . . 3 ((𝜑𝑥𝑋) → -((1 · 𝐷) / (𝐶↑2)) ∈ ℂ)
25 1cnd 9935 . . . 4 (𝜑 → 1 ∈ ℂ)
26 dvmptdiv.dc . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))
2710, 25, 2, 15, 26dvrecg 38800 . . 3 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (1 / 𝐶))) = (𝑥𝑋 ↦ -((1 · 𝐷) / (𝐶↑2))))
2810, 1, 11, 12, 13, 24, 27dvmptmul 23530 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · (1 / 𝐶)))) = (𝑥𝑋 ↦ ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴))))
2910, 1, 11, 12dvmptcl 23528 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
3029, 3mulcld 9939 . . . . . 6 ((𝜑𝑥𝑋) → (𝐵 · 𝐶) ∈ ℂ)
3130, 17, 22divcld 10680 . . . . 5 ((𝜑𝑥𝑋) → ((𝐵 · 𝐶) / (𝐶↑2)) ∈ ℂ)
3215, 1mulcld 9939 . . . . . 6 ((𝜑𝑥𝑋) → (𝐷 · 𝐴) ∈ ℂ)
3332, 17, 22divcld 10680 . . . . 5 ((𝜑𝑥𝑋) → ((𝐷 · 𝐴) / (𝐶↑2)) ∈ ℂ)
3431, 33negsubd 10277 . . . 4 ((𝜑𝑥𝑋) → (((𝐵 · 𝐶) / (𝐶↑2)) + -((𝐷 · 𝐴) / (𝐶↑2))) = (((𝐵 · 𝐶) / (𝐶↑2)) − ((𝐷 · 𝐴) / (𝐶↑2))))
3529, 14, 3, 6div12d 10716 . . . . . 6 ((𝜑𝑥𝑋) → (𝐵 · (1 / 𝐶)) = (1 · (𝐵 / 𝐶)))
3629, 3, 6divcld 10680 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐵 / 𝐶) ∈ ℂ)
3736mulid2d 9937 . . . . . 6 ((𝜑𝑥𝑋) → (1 · (𝐵 / 𝐶)) = (𝐵 / 𝐶))
383sqvald 12867 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐶↑2) = (𝐶 · 𝐶))
3938oveq2d 6565 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐵 · 𝐶) / (𝐶↑2)) = ((𝐵 · 𝐶) / (𝐶 · 𝐶)))
4029, 3, 3, 6, 6divcan5rd 10707 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐵 · 𝐶) / (𝐶 · 𝐶)) = (𝐵 / 𝐶))
4139, 40eqtr2d 2645 . . . . . 6 ((𝜑𝑥𝑋) → (𝐵 / 𝐶) = ((𝐵 · 𝐶) / (𝐶↑2)))
4235, 37, 413eqtrd 2648 . . . . 5 ((𝜑𝑥𝑋) → (𝐵 · (1 / 𝐶)) = ((𝐵 · 𝐶) / (𝐶↑2)))
4315mulid2d 9937 . . . . . . . . 9 ((𝜑𝑥𝑋) → (1 · 𝐷) = 𝐷)
4443oveq1d 6564 . . . . . . . 8 ((𝜑𝑥𝑋) → ((1 · 𝐷) / (𝐶↑2)) = (𝐷 / (𝐶↑2)))
4544negeqd 10154 . . . . . . 7 ((𝜑𝑥𝑋) → -((1 · 𝐷) / (𝐶↑2)) = -(𝐷 / (𝐶↑2)))
4645oveq1d 6564 . . . . . 6 ((𝜑𝑥𝑋) → (-((1 · 𝐷) / (𝐶↑2)) · 𝐴) = (-(𝐷 / (𝐶↑2)) · 𝐴))
4715, 17, 22divcld 10680 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐷 / (𝐶↑2)) ∈ ℂ)
4847, 1mulneg1d 10362 . . . . . 6 ((𝜑𝑥𝑋) → (-(𝐷 / (𝐶↑2)) · 𝐴) = -((𝐷 / (𝐶↑2)) · 𝐴))
4915, 1, 17, 22div23d 10717 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝐷 · 𝐴) / (𝐶↑2)) = ((𝐷 / (𝐶↑2)) · 𝐴))
5049eqcomd 2616 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝐷 / (𝐶↑2)) · 𝐴) = ((𝐷 · 𝐴) / (𝐶↑2)))
5150negeqd 10154 . . . . . 6 ((𝜑𝑥𝑋) → -((𝐷 / (𝐶↑2)) · 𝐴) = -((𝐷 · 𝐴) / (𝐶↑2)))
5246, 48, 513eqtrd 2648 . . . . 5 ((𝜑𝑥𝑋) → (-((1 · 𝐷) / (𝐶↑2)) · 𝐴) = -((𝐷 · 𝐴) / (𝐶↑2)))
5342, 52oveq12d 6567 . . . 4 ((𝜑𝑥𝑋) → ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴)) = (((𝐵 · 𝐶) / (𝐶↑2)) + -((𝐷 · 𝐴) / (𝐶↑2))))
5430, 32, 17, 22divsubdird 10719 . . . 4 ((𝜑𝑥𝑋) → (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)) = (((𝐵 · 𝐶) / (𝐶↑2)) − ((𝐷 · 𝐴) / (𝐶↑2))))
5534, 53, 543eqtr4d 2654 . . 3 ((𝜑𝑥𝑋) → ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴)) = (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)))
5655mpteq2dva 4672 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝐵 · (1 / 𝐶)) + (-((1 · 𝐷) / (𝐶↑2)) · 𝐴))) = (𝑥𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2))))
579, 28, 563eqtrd 2648 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐶))) = (𝑥𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  cdif 3537  {csn 4125  {cpr 4127  cmpt 4643  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  cexp 12722   D cdv 23433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-t1 20928  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437
This theorem is referenced by:  dvdivf  38812  dvdivbd  38813  fourierdlem56  39055  fourierdlem57  39056
  Copyright terms: Public domain W3C validator