Step | Hyp | Ref
| Expression |
1 | | dirkercncflem3.d |
. . 3
⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) ·
(sin‘(𝑦 /
2))))))) |
2 | | oveq2 6557 |
. . . . 5
⊢ (𝑤 = 𝑦 → ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑦)) |
3 | 2 | fveq2d 6107 |
. . . 4
⊢ (𝑤 = 𝑦 → (sin‘((𝑁 + (1 / 2)) · 𝑤)) = (sin‘((𝑁 + (1 / 2)) · 𝑦))) |
4 | 3 | cbvmptv 4678 |
. . 3
⊢ (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑤))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) |
5 | | oveq1 6556 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑤 / 2) = (𝑦 / 2)) |
6 | 5 | fveq2d 6107 |
. . . . 5
⊢ (𝑤 = 𝑦 → (sin‘(𝑤 / 2)) = (sin‘(𝑦 / 2))) |
7 | 6 | oveq2d 6565 |
. . . 4
⊢ (𝑤 = 𝑦 → ((2 · π) ·
(sin‘(𝑤 / 2))) = ((2
· π) · (sin‘(𝑦 / 2)))) |
8 | 7 | cbvmptv 4678 |
. . 3
⊢ (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) ·
(sin‘(𝑤 / 2)))) =
(𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) ·
(sin‘(𝑦 /
2)))) |
9 | | dirkercncflem3.a |
. . . . . . . 8
⊢ 𝐴 = (𝑌 − π) |
10 | | dirkercncflem3.b |
. . . . . . . 8
⊢ 𝐵 = (𝑌 + π) |
11 | | dirkercncflem3.yr |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ ℝ) |
12 | | dirkercncflem3.yod |
. . . . . . . 8
⊢ (𝜑 → (𝑌 mod (2 · π)) =
0) |
13 | 9, 10, 11, 12 | dirkercncflem1 38996 |
. . . . . . 7
⊢ (𝜑 → (𝑌 ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠
0))) |
14 | 13 | simprd 478 |
. . . . . 6
⊢ (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0)) |
15 | | r19.26 3046 |
. . . . . 6
⊢
(∀𝑦 ∈
((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0) ↔
(∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0 ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0)) |
16 | 14, 15 | sylib 207 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0 ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0)) |
17 | 16 | simpld 474 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0) |
18 | 17 | r19.21bi 2916 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0) |
19 | 2 | fveq2d 6107 |
. . . . 5
⊢ (𝑤 = 𝑦 → (cos‘((𝑁 + (1 / 2)) · 𝑤)) = (cos‘((𝑁 + (1 / 2)) · 𝑦))) |
20 | 19 | oveq2d 6565 |
. . . 4
⊢ (𝑤 = 𝑦 → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) |
21 | 20 | cbvmptv 4678 |
. . 3
⊢ (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) |
22 | 5 | fveq2d 6107 |
. . . . 5
⊢ (𝑤 = 𝑦 → (cos‘(𝑤 / 2)) = (cos‘(𝑦 / 2))) |
23 | 22 | oveq2d 6565 |
. . . 4
⊢ (𝑤 = 𝑦 → (π · (cos‘(𝑤 / 2))) = (π ·
(cos‘(𝑦 /
2)))) |
24 | 23 | cbvmptv 4678 |
. . 3
⊢ (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑤 / 2)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))) |
25 | | eqid 2610 |
. . 3
⊢ (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑧))) / (π ·
(cos‘(𝑧 / 2))))) =
(𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑧))) / (π ·
(cos‘(𝑧 /
2))))) |
26 | | dirkercncflem3.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
27 | 13 | simpld 474 |
. . 3
⊢ (𝜑 → 𝑌 ∈ (𝐴(,)𝐵)) |
28 | 16 | simprd 478 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0) |
29 | 28 | r19.21bi 2916 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0) |
30 | 1, 4, 8, 18, 21, 24, 25, 26, 27, 12, 29 | dirkercncflem2 38997 |
. 2
⊢ (𝜑 → ((𝐷‘𝑁)‘𝑌) ∈ (((𝐷‘𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) limℂ 𝑌)) |
31 | 1 | dirkerf 38990 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (𝐷‘𝑁):ℝ⟶ℝ) |
32 | 26, 31 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐷‘𝑁):ℝ⟶ℝ) |
33 | | ax-resscn 9872 |
. . . . 5
⊢ ℝ
⊆ ℂ |
34 | 33 | a1i 11 |
. . . 4
⊢ (𝜑 → ℝ ⊆
ℂ) |
35 | 32, 34 | fssd 5970 |
. . 3
⊢ (𝜑 → (𝐷‘𝑁):ℝ⟶ℂ) |
36 | | ioossre 12106 |
. . . . 5
⊢ (𝐴(,)𝐵) ⊆ ℝ |
37 | 36 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
38 | 37 | ssdifssd 3710 |
. . 3
⊢ (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ) |
39 | | eqid 2610 |
. . 3
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
40 | | eqid 2610 |
. . 3
⊢
((TopOpen‘ℂfld) ↾t (ℝ
∪ {𝑌})) =
((TopOpen‘ℂfld) ↾t (ℝ ∪
{𝑌})) |
41 | | iooretop 22379 |
. . . . . . 7
⊢ (𝐴(,)𝐵) ∈ (topGen‘ran
(,)) |
42 | | retop 22375 |
. . . . . . . 8
⊢
(topGen‘ran (,)) ∈ Top |
43 | | uniretop 22376 |
. . . . . . . . 9
⊢ ℝ =
∪ (topGen‘ran (,)) |
44 | 43 | isopn3 20680 |
. . . . . . . 8
⊢
(((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)𝐵) ⊆ ℝ) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔
((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))) |
45 | 42, 37, 44 | sylancr 694 |
. . . . . . 7
⊢ (𝜑 → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔
((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))) |
46 | 41, 45 | mpbii 222 |
. . . . . 6
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)) |
47 | 27, 46 | eleqtrrd 2691 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ ((int‘(topGen‘ran
(,)))‘(𝐴(,)𝐵))) |
48 | 39 | tgioo2 22414 |
. . . . . . . 8
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
49 | 48 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (topGen‘ran (,)) =
((TopOpen‘ℂfld) ↾t
ℝ)) |
50 | 49 | fveq2d 6107 |
. . . . . 6
⊢ (𝜑 →
(int‘(topGen‘ran (,))) =
(int‘((TopOpen‘ℂfld) ↾t
ℝ))) |
51 | 50 | fveq1d 6105 |
. . . . 5
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) =
((int‘((TopOpen‘ℂfld) ↾t
ℝ))‘(𝐴(,)𝐵))) |
52 | 47, 51 | eleqtrd 2690 |
. . . 4
⊢ (𝜑 → 𝑌 ∈
((int‘((TopOpen‘ℂfld) ↾t
ℝ))‘(𝐴(,)𝐵))) |
53 | 11 | snssd 4281 |
. . . . . . . 8
⊢ (𝜑 → {𝑌} ⊆ ℝ) |
54 | | ssequn2 3748 |
. . . . . . . 8
⊢ ({𝑌} ⊆ ℝ ↔
(ℝ ∪ {𝑌}) =
ℝ) |
55 | 53, 54 | sylib 207 |
. . . . . . 7
⊢ (𝜑 → (ℝ ∪ {𝑌}) = ℝ) |
56 | 55 | oveq2d 6565 |
. . . . . 6
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t (ℝ ∪
{𝑌})) =
((TopOpen‘ℂfld) ↾t
ℝ)) |
57 | 56 | fveq2d 6107 |
. . . . 5
⊢ (𝜑 →
(int‘((TopOpen‘ℂfld) ↾t (ℝ
∪ {𝑌}))) =
(int‘((TopOpen‘ℂfld) ↾t
ℝ))) |
58 | | uncom 3719 |
. . . . . 6
⊢ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) |
59 | 27 | snssd 4281 |
. . . . . . 7
⊢ (𝜑 → {𝑌} ⊆ (𝐴(,)𝐵)) |
60 | | undif 4001 |
. . . . . . 7
⊢ ({𝑌} ⊆ (𝐴(,)𝐵) ↔ ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵)) |
61 | 59, 60 | sylib 207 |
. . . . . 6
⊢ (𝜑 → ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵)) |
62 | 58, 61 | syl5eq 2656 |
. . . . 5
⊢ (𝜑 → (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = (𝐴(,)𝐵)) |
63 | 57, 62 | fveq12d 6109 |
. . . 4
⊢ (𝜑 →
((int‘((TopOpen‘ℂfld) ↾t (ℝ
∪ {𝑌})))‘(((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) =
((int‘((TopOpen‘ℂfld) ↾t
ℝ))‘(𝐴(,)𝐵))) |
64 | 52, 63 | eleqtrrd 2691 |
. . 3
⊢ (𝜑 → 𝑌 ∈
((int‘((TopOpen‘ℂfld) ↾t (ℝ
∪ {𝑌})))‘(((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}))) |
65 | 35, 38, 34, 39, 40, 64 | limcres 23456 |
. 2
⊢ (𝜑 → (((𝐷‘𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) limℂ 𝑌) = ((𝐷‘𝑁) limℂ 𝑌)) |
66 | 30, 65 | eleqtrd 2690 |
1
⊢ (𝜑 → ((𝐷‘𝑁)‘𝑌) ∈ ((𝐷‘𝑁) limℂ 𝑌)) |