MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcres Structured version   Visualization version   GIF version

Theorem limcres 23456
Description: If 𝐵 is an interior point of 𝐶 ∪ {𝐵} relative to the domain 𝐴, then a limit point of 𝐹𝐶 extends to a limit of 𝐹. (Contributed by Mario Carneiro, 27-Dec-2016.)
Hypotheses
Ref Expression
limcres.f (𝜑𝐹:𝐴⟶ℂ)
limcres.c (𝜑𝐶𝐴)
limcres.a (𝜑𝐴 ⊆ ℂ)
limcres.k 𝐾 = (TopOpen‘ℂfld)
limcres.j 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
limcres.i (𝜑𝐵 ∈ ((int‘𝐽)‘(𝐶 ∪ {𝐵})))
Assertion
Ref Expression
limcres (𝜑 → ((𝐹𝐶) lim 𝐵) = (𝐹 lim 𝐵))

Proof of Theorem limcres
Dummy variables 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 23444 . . . . . 6 (𝑥 ∈ ((𝐹𝐶) lim 𝐵) → ((𝐹𝐶):dom (𝐹𝐶)⟶ℂ ∧ dom (𝐹𝐶) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
21simp3d 1068 . . . . 5 (𝑥 ∈ ((𝐹𝐶) lim 𝐵) → 𝐵 ∈ ℂ)
3 limccl 23445 . . . . . 6 ((𝐹𝐶) lim 𝐵) ⊆ ℂ
43sseli 3564 . . . . 5 (𝑥 ∈ ((𝐹𝐶) lim 𝐵) → 𝑥 ∈ ℂ)
52, 4jca 553 . . . 4 (𝑥 ∈ ((𝐹𝐶) lim 𝐵) → (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ))
65a1i 11 . . 3 (𝜑 → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) → (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)))
7 limcrcl 23444 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
87simp3d 1068 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐵 ∈ ℂ)
9 limccl 23445 . . . . . 6 (𝐹 lim 𝐵) ⊆ ℂ
109sseli 3564 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → 𝑥 ∈ ℂ)
118, 10jca 553 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ))
1211a1i 11 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) → (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)))
13 limcres.j . . . . . . . 8 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
14 limcres.k . . . . . . . . . 10 𝐾 = (TopOpen‘ℂfld)
1514cnfldtopon 22396 . . . . . . . . 9 𝐾 ∈ (TopOn‘ℂ)
16 limcres.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℂ)
1716adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐴 ⊆ ℂ)
18 simprl 790 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐵 ∈ ℂ)
1918snssd 4281 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → {𝐵} ⊆ ℂ)
2017, 19unssd 3751 . . . . . . . . 9 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐴 ∪ {𝐵}) ⊆ ℂ)
21 resttopon 20775 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
2215, 20, 21sylancr 694 . . . . . . . 8 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
2313, 22syl5eqel 2692 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐽 ∈ (TopOn‘(𝐴 ∪ {𝐵})))
24 topontop 20541 . . . . . . 7 (𝐽 ∈ (TopOn‘(𝐴 ∪ {𝐵})) → 𝐽 ∈ Top)
2523, 24syl 17 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐽 ∈ Top)
26 limcres.c . . . . . . . . 9 (𝜑𝐶𝐴)
2726adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐶𝐴)
28 unss1 3744 . . . . . . . 8 (𝐶𝐴 → (𝐶 ∪ {𝐵}) ⊆ (𝐴 ∪ {𝐵}))
2927, 28syl 17 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 ∪ {𝐵}) ⊆ (𝐴 ∪ {𝐵}))
30 toponuni 20542 . . . . . . . 8 (𝐽 ∈ (TopOn‘(𝐴 ∪ {𝐵})) → (𝐴 ∪ {𝐵}) = 𝐽)
3123, 30syl 17 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐴 ∪ {𝐵}) = 𝐽)
3229, 31sseqtrd 3604 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 ∪ {𝐵}) ⊆ 𝐽)
33 limcres.i . . . . . . 7 (𝜑𝐵 ∈ ((int‘𝐽)‘(𝐶 ∪ {𝐵})))
3433adantr 480 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐵 ∈ ((int‘𝐽)‘(𝐶 ∪ {𝐵})))
35 elun 3715 . . . . . . . . 9 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 ∈ {𝐵}))
36 simplrr 797 . . . . . . . . . . 11 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧𝐴) → 𝑥 ∈ ℂ)
37 limcres.f . . . . . . . . . . . . 13 (𝜑𝐹:𝐴⟶ℂ)
3837adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐹:𝐴⟶ℂ)
3938ffvelrnda 6267 . . . . . . . . . . 11 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
4036, 39ifcld 4081 . . . . . . . . . 10 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧𝐴) → if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)) ∈ ℂ)
41 elsni 4142 . . . . . . . . . . . . 13 (𝑧 ∈ {𝐵} → 𝑧 = 𝐵)
4241adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ {𝐵}) → 𝑧 = 𝐵)
4342iftrued 4044 . . . . . . . . . . 11 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ {𝐵}) → if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)) = 𝑥)
44 simplrr 797 . . . . . . . . . . 11 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ {𝐵}) → 𝑥 ∈ ℂ)
4543, 44eqeltrd 2688 . . . . . . . . . 10 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ {𝐵}) → if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)) ∈ ℂ)
4640, 45jaodan 822 . . . . . . . . 9 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ (𝑧𝐴𝑧 ∈ {𝐵})) → if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)) ∈ ℂ)
4735, 46sylan2b 491 . . . . . . . 8 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ (𝐴 ∪ {𝐵})) → if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)) ∈ ℂ)
48 eqid 2610 . . . . . . . 8 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
4947, 48fmptd 6292 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))):(𝐴 ∪ {𝐵})⟶ℂ)
5031feq2d 5944 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))):(𝐴 ∪ {𝐵})⟶ℂ ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))): 𝐽⟶ℂ))
5149, 50mpbid 221 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))): 𝐽⟶ℂ)
52 eqid 2610 . . . . . . 7 𝐽 = 𝐽
5315toponunii 20547 . . . . . . 7 ℂ = 𝐾
5452, 53cnprest 20903 . . . . . 6 (((𝐽 ∈ Top ∧ (𝐶 ∪ {𝐵}) ⊆ 𝐽) ∧ (𝐵 ∈ ((int‘𝐽)‘(𝐶 ∪ {𝐵})) ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))): 𝐽⟶ℂ)) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ↾ (𝐶 ∪ {𝐵})) ∈ (((𝐽t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
5525, 32, 34, 51, 54syl22anc 1319 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ↾ (𝐶 ∪ {𝐵})) ∈ (((𝐽t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
5613, 14, 48, 38, 17, 18ellimc 23443 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
57 eqid 2610 . . . . . . 7 (𝐾t (𝐶 ∪ {𝐵})) = (𝐾t (𝐶 ∪ {𝐵}))
58 eqid 2610 . . . . . . 7 (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧))) = (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧)))
5938, 27fssresd 5984 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐹𝐶):𝐶⟶ℂ)
6027, 17sstrd 3578 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐶 ⊆ ℂ)
6157, 14, 58, 59, 60, 18ellimc 23443 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧))) ∈ (((𝐾t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
6229resmptd 5371 . . . . . . . 8 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ↾ (𝐶 ∪ {𝐵})) = (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))))
63 elun 3715 . . . . . . . . . . 11 (𝑧 ∈ (𝐶 ∪ {𝐵}) ↔ (𝑧𝐶𝑧 ∈ {𝐵}))
64 velsn 4141 . . . . . . . . . . . 12 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
6564orbi2i 540 . . . . . . . . . . 11 ((𝑧𝐶𝑧 ∈ {𝐵}) ↔ (𝑧𝐶𝑧 = 𝐵))
6663, 65bitri 263 . . . . . . . . . 10 (𝑧 ∈ (𝐶 ∪ {𝐵}) ↔ (𝑧𝐶𝑧 = 𝐵))
67 pm5.61 745 . . . . . . . . . . . 12 (((𝑧𝐶𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧𝐶 ∧ ¬ 𝑧 = 𝐵))
68 fvres 6117 . . . . . . . . . . . . 13 (𝑧𝐶 → ((𝐹𝐶)‘𝑧) = (𝐹𝑧))
6968adantr 480 . . . . . . . . . . . 12 ((𝑧𝐶 ∧ ¬ 𝑧 = 𝐵) → ((𝐹𝐶)‘𝑧) = (𝐹𝑧))
7067, 69sylbi 206 . . . . . . . . . . 11 (((𝑧𝐶𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) → ((𝐹𝐶)‘𝑧) = (𝐹𝑧))
7170ifeq2da 4067 . . . . . . . . . 10 ((𝑧𝐶𝑧 = 𝐵) → if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
7266, 71sylbi 206 . . . . . . . . 9 (𝑧 ∈ (𝐶 ∪ {𝐵}) → if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
7372mpteq2ia 4668 . . . . . . . 8 (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧))) = (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
7462, 73syl6reqr 2663 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧))) = ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ↾ (𝐶 ∪ {𝐵})))
7513oveq1i 6559 . . . . . . . . . 10 (𝐽t (𝐶 ∪ {𝐵})) = ((𝐾t (𝐴 ∪ {𝐵})) ↾t (𝐶 ∪ {𝐵}))
7615a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐾 ∈ (TopOn‘ℂ))
77 cnex 9896 . . . . . . . . . . . . 13 ℂ ∈ V
7877ssex 4730 . . . . . . . . . . . 12 ((𝐴 ∪ {𝐵}) ⊆ ℂ → (𝐴 ∪ {𝐵}) ∈ V)
7920, 78syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐴 ∪ {𝐵}) ∈ V)
80 restabs 20779 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐶 ∪ {𝐵}) ⊆ (𝐴 ∪ {𝐵}) ∧ (𝐴 ∪ {𝐵}) ∈ V) → ((𝐾t (𝐴 ∪ {𝐵})) ↾t (𝐶 ∪ {𝐵})) = (𝐾t (𝐶 ∪ {𝐵})))
8176, 29, 79, 80syl3anc 1318 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝐾t (𝐴 ∪ {𝐵})) ↾t (𝐶 ∪ {𝐵})) = (𝐾t (𝐶 ∪ {𝐵})))
8275, 81syl5req 2657 . . . . . . . . 9 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐾t (𝐶 ∪ {𝐵})) = (𝐽t (𝐶 ∪ {𝐵})))
8382oveq1d 6564 . . . . . . . 8 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝐾t (𝐶 ∪ {𝐵})) CnP 𝐾) = ((𝐽t (𝐶 ∪ {𝐵})) CnP 𝐾))
8483fveq1d 6105 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (((𝐾t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵) = (((𝐽t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵))
8574, 84eleq12d 2682 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧))) ∈ (((𝐾t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ↾ (𝐶 ∪ {𝐵})) ∈ (((𝐽t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
8661, 85bitrd 267 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ↾ (𝐶 ∪ {𝐵})) ∈ (((𝐽t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
8755, 56, 863bitr4rd 300 . . . 4 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ 𝑥 ∈ (𝐹 lim 𝐵)))
8887ex 449 . . 3 (𝜑 → ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ 𝑥 ∈ (𝐹 lim 𝐵))))
896, 12, 88pm5.21ndd 368 . 2 (𝜑 → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ 𝑥 ∈ (𝐹 lim 𝐵)))
9089eqrdv 2608 1 (𝜑 → ((𝐹𝐶) lim 𝐵) = (𝐹 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cun 3538  wss 3540  ifcif 4036  {csn 4125   cuni 4372  cmpt 4643  dom cdm 5038  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  t crest 15904  TopOpenctopn 15905  fldccnfld 19567  Topctop 20517  TopOnctopon 20518  intcnt 20631   CnP ccnp 20839   lim climc 23432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-ntr 20634  df-cnp 20842  df-xms 21935  df-ms 21936  df-limc 23436
This theorem is referenced by:  dvreslem  23479  dvaddbr  23507  dvmulbr  23508  lhop2  23582  lhop  23583  limciccioolb  38688  limcicciooub  38704  limcresiooub  38709  limcresioolb  38710  ioccncflimc  38771  icocncflimc  38775  dirkercncflem3  38998  fourierdlem32  39032  fourierdlem33  39033  fourierdlem48  39047  fourierdlem49  39048  fourierdlem62  39061  fouriersw  39124
  Copyright terms: Public domain W3C validator