Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvxpcon Structured version   Visualization version   GIF version

Theorem cvxpcon 30478
 Description: A convex subset of the complex numbers is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
cvxpcon.1 (𝜑𝑆 ⊆ ℂ)
cvxpcon.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
cvxpcon.3 𝐽 = (TopOpen‘ℂfld)
cvxpcon.4 𝐾 = (𝐽t 𝑆)
Assertion
Ref Expression
cvxpcon (𝜑𝐾 ∈ PCon)
Distinct variable groups:   𝑡,𝐽   𝑥,𝑡,𝑦,𝐾   𝜑,𝑡,𝑥,𝑦   𝑡,𝑆,𝑥,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)

Proof of Theorem cvxpcon
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cvxpcon.4 . . 3 𝐾 = (𝐽t 𝑆)
2 cvxpcon.3 . . . . 5 𝐽 = (TopOpen‘ℂfld)
32cnfldtop 22397 . . . 4 𝐽 ∈ Top
4 cvxpcon.1 . . . . 5 (𝜑𝑆 ⊆ ℂ)
5 cnex 9896 . . . . 5 ℂ ∈ V
6 ssexg 4732 . . . . 5 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
74, 5, 6sylancl 693 . . . 4 (𝜑𝑆 ∈ V)
8 resttop 20774 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → (𝐽t 𝑆) ∈ Top)
93, 7, 8sylancr 694 . . 3 (𝜑 → (𝐽t 𝑆) ∈ Top)
101, 9syl5eqel 2692 . 2 (𝜑𝐾 ∈ Top)
112dfii3 22494 . . . . . . . 8 II = (𝐽t (0[,]1))
122cnfldtopon 22396 . . . . . . . . 9 𝐽 ∈ (TopOn‘ℂ)
1312a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝐽 ∈ (TopOn‘ℂ))
14 unitssre 12190 . . . . . . . . . 10 (0[,]1) ⊆ ℝ
15 ax-resscn 9872 . . . . . . . . . 10 ℝ ⊆ ℂ
1614, 15sstri 3577 . . . . . . . . 9 (0[,]1) ⊆ ℂ
1716a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0[,]1) ⊆ ℂ)
1813cnmptid 21274 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (𝐽 Cn 𝐽))
194adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑆 ⊆ ℂ)
20 simprr 792 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑥𝑆)
2119, 20sseldd 3569 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑥 ∈ ℂ)
2213, 13, 21cnmptc 21275 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
232mulcn 22478 . . . . . . . . . . 11 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
2423a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2513, 18, 22, 24cnmpt12f 21279 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ (𝑡 · 𝑥)) ∈ (𝐽 Cn 𝐽))
26 1cnd 9935 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 1 ∈ ℂ)
2713, 13, 26cnmptc 21275 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ 1) ∈ (𝐽 Cn 𝐽))
282subcn 22477 . . . . . . . . . . . 12 − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
2928a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3013, 27, 18, 29cnmpt12f 21279 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ (1 − 𝑡)) ∈ (𝐽 Cn 𝐽))
31 simprl 790 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑦𝑆)
3219, 31sseldd 3569 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → 𝑦 ∈ ℂ)
3313, 13, 32cnmptc 21275 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ 𝑦) ∈ (𝐽 Cn 𝐽))
3413, 30, 33, 24cnmpt12f 21279 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ ((1 − 𝑡) · 𝑦)) ∈ (𝐽 Cn 𝐽))
352addcn 22476 . . . . . . . . . 10 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
3635a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3713, 25, 34, 36cnmpt12f 21279 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ ℂ ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (𝐽 Cn 𝐽))
3811, 13, 17, 37cnmpt1res 21289 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐽))
39 cvxpcon.2 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
40393exp2 1277 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑆 → (𝑦𝑆 → (𝑡 ∈ (0[,]1) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆))))
4140com23 84 . . . . . . . . . . 11 (𝜑 → (𝑦𝑆 → (𝑥𝑆 → (𝑡 ∈ (0[,]1) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆))))
4241imp42 618 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝑆𝑥𝑆)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
43 eqid 2610 . . . . . . . . . 10 (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))
4442, 43fmptd 6292 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))):(0[,]1)⟶𝑆)
45 frn 5966 . . . . . . . . 9 ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))):(0[,]1)⟶𝑆 → ran (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ⊆ 𝑆)
4644, 45syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ran (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ⊆ 𝑆)
47 cnrest2 20900 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ℂ) ∧ ran (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ⊆ 𝑆𝑆 ⊆ ℂ) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐽) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn (𝐽t 𝑆))))
4813, 46, 19, 47syl3anc 1318 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐽) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn (𝐽t 𝑆))))
4938, 48mpbid 221 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn (𝐽t 𝑆)))
501oveq2i 6560 . . . . . 6 (II Cn 𝐾) = (II Cn (𝐽t 𝑆))
5149, 50syl6eleqr 2699 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐾))
52 0elunit 12161 . . . . . . 7 0 ∈ (0[,]1)
53 oveq1 6556 . . . . . . . . 9 (𝑡 = 0 → (𝑡 · 𝑥) = (0 · 𝑥))
54 oveq2 6557 . . . . . . . . . . 11 (𝑡 = 0 → (1 − 𝑡) = (1 − 0))
55 1m0e1 11008 . . . . . . . . . . 11 (1 − 0) = 1
5654, 55syl6eq 2660 . . . . . . . . . 10 (𝑡 = 0 → (1 − 𝑡) = 1)
5756oveq1d 6564 . . . . . . . . 9 (𝑡 = 0 → ((1 − 𝑡) · 𝑦) = (1 · 𝑦))
5853, 57oveq12d 6567 . . . . . . . 8 (𝑡 = 0 → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = ((0 · 𝑥) + (1 · 𝑦)))
59 ovex 6577 . . . . . . . 8 ((0 · 𝑥) + (1 · 𝑦)) ∈ V
6058, 43, 59fvmpt 6191 . . . . . . 7 (0 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = ((0 · 𝑥) + (1 · 𝑦)))
6152, 60ax-mp 5 . . . . . 6 ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = ((0 · 𝑥) + (1 · 𝑦))
6221mul02d 10113 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0 · 𝑥) = 0)
6332mulid2d 9937 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (1 · 𝑦) = 𝑦)
6462, 63oveq12d 6567 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((0 · 𝑥) + (1 · 𝑦)) = (0 + 𝑦))
6532addid2d 10116 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0 + 𝑦) = 𝑦)
6664, 65eqtrd 2644 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((0 · 𝑥) + (1 · 𝑦)) = 𝑦)
6761, 66syl5eq 2656 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦)
68 1elunit 12162 . . . . . . 7 1 ∈ (0[,]1)
69 oveq1 6556 . . . . . . . . 9 (𝑡 = 1 → (𝑡 · 𝑥) = (1 · 𝑥))
70 oveq2 6557 . . . . . . . . . . 11 (𝑡 = 1 → (1 − 𝑡) = (1 − 1))
71 1m1e0 10966 . . . . . . . . . . 11 (1 − 1) = 0
7270, 71syl6eq 2660 . . . . . . . . . 10 (𝑡 = 1 → (1 − 𝑡) = 0)
7372oveq1d 6564 . . . . . . . . 9 (𝑡 = 1 → ((1 − 𝑡) · 𝑦) = (0 · 𝑦))
7469, 73oveq12d 6567 . . . . . . . 8 (𝑡 = 1 → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = ((1 · 𝑥) + (0 · 𝑦)))
75 ovex 6577 . . . . . . . 8 ((1 · 𝑥) + (0 · 𝑦)) ∈ V
7674, 43, 75fvmpt 6191 . . . . . . 7 (1 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = ((1 · 𝑥) + (0 · 𝑦)))
7768, 76ax-mp 5 . . . . . 6 ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = ((1 · 𝑥) + (0 · 𝑦))
7821mulid2d 9937 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (1 · 𝑥) = 𝑥)
7932mul02d 10113 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (0 · 𝑦) = 0)
8078, 79oveq12d 6567 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((1 · 𝑥) + (0 · 𝑦)) = (𝑥 + 0))
8121addid1d 10115 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → (𝑥 + 0) = 𝑥)
8280, 81eqtrd 2644 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((1 · 𝑥) + (0 · 𝑦)) = 𝑥)
8377, 82syl5eq 2656 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥)
84 fveq1 6102 . . . . . . . 8 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (𝑓‘0) = ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0))
8584eqeq1d 2612 . . . . . . 7 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → ((𝑓‘0) = 𝑦 ↔ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦))
86 fveq1 6102 . . . . . . . 8 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (𝑓‘1) = ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1))
8786eqeq1d 2612 . . . . . . 7 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → ((𝑓‘1) = 𝑥 ↔ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥))
8885, 87anbi12d 743 . . . . . 6 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) → (((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥) ↔ (((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦 ∧ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥)))
8988rspcev 3282 . . . . 5 (((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ∈ (II Cn 𝐾) ∧ (((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘0) = 𝑦 ∧ ((𝑡 ∈ (0[,]1) ↦ ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)))‘1) = 𝑥)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
9051, 67, 83, 89syl12anc 1316 . . . 4 ((𝜑 ∧ (𝑦𝑆𝑥𝑆)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
9190ralrimivva 2954 . . 3 (𝜑 → ∀𝑦𝑆𝑥𝑆𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
92 resttopon 20775 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
9312, 4, 92sylancr 694 . . . . . 6 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
941, 93syl5eqel 2692 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑆))
95 toponuni 20542 . . . . 5 (𝐾 ∈ (TopOn‘𝑆) → 𝑆 = 𝐾)
9694, 95syl 17 . . . 4 (𝜑𝑆 = 𝐾)
9796raleqdv 3121 . . . 4 (𝜑 → (∀𝑥𝑆𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥) ↔ ∀𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥)))
9896, 97raleqbidv 3129 . . 3 (𝜑 → (∀𝑦𝑆𝑥𝑆𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥) ↔ ∀𝑦 𝐾𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥)))
9991, 98mpbid 221 . 2 (𝜑 → ∀𝑦 𝐾𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥))
100 eqid 2610 . . 3 𝐾 = 𝐾
101100ispcon 30459 . 2 (𝐾 ∈ PCon ↔ (𝐾 ∈ Top ∧ ∀𝑦 𝐾𝑥 𝐾𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑥)))
10210, 99, 101sylanbrc 695 1 (𝜑𝐾 ∈ PCon)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ⊆ wss 3540  ∪ cuni 4372   ↦ cmpt 4643  ran crn 5039  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   − cmin 10145  [,]cicc 12049   ↾t crest 15904  TopOpenctopn 15905  ℂfldccnfld 19567  Topctop 20517  TopOnctopon 20518   Cn ccn 20838   ×t ctx 21173  IIcii 22486  PConcpcon 30455 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-ii 22488  df-pcon 30457 This theorem is referenced by:  cvxscon  30479
 Copyright terms: Public domain W3C validator