MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitscmp Structured version   Visualization version   GIF version

Theorem bitscmp 14998
Description: The bit complement of 𝑁 is -𝑁 − 1. (Thus, by bitsfi 14997, all negative numbers have cofinite bits representations.) (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitscmp (𝑁 ∈ ℤ → (ℕ0 ∖ (bits‘𝑁)) = (bits‘(-𝑁 − 1)))

Proof of Theorem bitscmp
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 bitsval2 14985 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑚 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
2 2z 11286 . . . . . . . . . 10 2 ∈ ℤ
32a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 2 ∈ ℤ)
4 simpl 472 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑁 ∈ ℤ)
54zred 11358 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑁 ∈ ℝ)
6 2nn 11062 . . . . . . . . . . . . 13 2 ∈ ℕ
76a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 2 ∈ ℕ)
8 simpr 476 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
97, 8nnexpcld 12892 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
105, 9nndivred 10946 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 / (2↑𝑚)) ∈ ℝ)
1110flcld 12461 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ)
12 dvdsnegb 14837 . . . . . . . . 9 ((2 ∈ ℤ ∧ (⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ) → (2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚)))))
133, 11, 12syl2anc 691 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚)))))
1413notbid 307 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ ¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚)))))
1511znegcld 11360 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ)
16 oddm1even 14905 . . . . . . . . 9 (-(⌊‘(𝑁 / (2↑𝑚))) ∈ ℤ → (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1)))
1715, 16syl 17 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1)))
18 flltp1 12463 . . . . . . . . . . . . . . . 16 ((𝑁 / (2↑𝑚)) ∈ ℝ → (𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1))
1910, 18syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1))
2011zred 11358 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ∈ ℝ)
21 1red 9934 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℝ)
2220, 21readdcld 9948 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((⌊‘(𝑁 / (2↑𝑚))) + 1) ∈ ℝ)
2310, 22ltnegd 10484 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((𝑁 / (2↑𝑚)) < ((⌊‘(𝑁 / (2↑𝑚))) + 1) ↔ -((⌊‘(𝑁 / (2↑𝑚))) + 1) < -(𝑁 / (2↑𝑚))))
2419, 23mpbid 221 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -((⌊‘(𝑁 / (2↑𝑚))) + 1) < -(𝑁 / (2↑𝑚)))
2520recnd 9947 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ∈ ℂ)
2621recnd 9947 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℂ)
2725, 26negdi2d 10285 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -((⌊‘(𝑁 / (2↑𝑚))) + 1) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1))
285recnd 9947 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 𝑁 ∈ ℂ)
299nncnd 10913 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℂ)
309nnne0d 10942 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ≠ 0)
3128, 29, 30divnegd 10693 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(𝑁 / (2↑𝑚)) = (-𝑁 / (2↑𝑚)))
3224, 27, 313brtr3d 4614 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) < (-𝑁 / (2↑𝑚)))
33 1zzd 11285 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℤ)
3415, 33zsubcld 11363 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ∈ ℤ)
3534zred 11358 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ∈ ℝ)
365renegcld 10336 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -𝑁 ∈ ℝ)
379nnrpd 11746 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℝ+)
3835, 36, 37ltmuldivd 11795 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) < (-𝑁 / (2↑𝑚))))
3932, 38mpbird 246 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁)
409nnzd 11357 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℤ)
4134, 40zmulcld 11364 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ∈ ℤ)
424znegcld 11360 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -𝑁 ∈ ℤ)
43 zltlem1 11307 . . . . . . . . . . . . 13 ((((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ∈ ℤ ∧ -𝑁 ∈ ℤ) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1)))
4441, 42, 43syl2anc 691 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) < -𝑁 ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1)))
4539, 44mpbid 221 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1))
4636, 21resubcld 10337 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 − 1) ∈ ℝ)
4735, 46, 37lemuldivd 11797 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-(⌊‘(𝑁 / (2↑𝑚))) − 1) · (2↑𝑚)) ≤ (-𝑁 − 1) ↔ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚))))
4845, 47mpbid 221 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚)))
49 flle 12462 . . . . . . . . . . . . . . . . 17 ((𝑁 / (2↑𝑚)) ∈ ℝ → (⌊‘(𝑁 / (2↑𝑚))) ≤ (𝑁 / (2↑𝑚)))
5010, 49syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘(𝑁 / (2↑𝑚))) ≤ (𝑁 / (2↑𝑚)))
5120, 10lenegd 10485 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((⌊‘(𝑁 / (2↑𝑚))) ≤ (𝑁 / (2↑𝑚)) ↔ -(𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚)))))
5250, 51mpbid 221 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))))
5331, 52eqbrtrrd 4607 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))))
5420renegcld 10336 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(⌊‘(𝑁 / (2↑𝑚))) ∈ ℝ)
5536, 54, 37ledivmuld 11801 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 / (2↑𝑚)) ≤ -(⌊‘(𝑁 / (2↑𝑚))) ↔ -𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
5653, 55mpbid 221 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))))
5740, 15zmulcld 11364 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ∈ ℤ)
58 zlem1lt 11306 . . . . . . . . . . . . . 14 ((-𝑁 ∈ ℤ ∧ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ∈ ℤ) → (-𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ↔ (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
5942, 57, 58syl2anc 691 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 ≤ ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))) ↔ (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
6056, 59mpbid 221 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚)))))
6146, 54, 37ltdivmuld 11799 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (((-𝑁 − 1) / (2↑𝑚)) < -(⌊‘(𝑁 / (2↑𝑚))) ↔ (-𝑁 − 1) < ((2↑𝑚) · -(⌊‘(𝑁 / (2↑𝑚))))))
6260, 61mpbird 246 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 − 1) / (2↑𝑚)) < -(⌊‘(𝑁 / (2↑𝑚))))
6325negcld 10258 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → -(⌊‘(𝑁 / (2↑𝑚))) ∈ ℂ)
6463, 26npcand 10275 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1) = -(⌊‘(𝑁 / (2↑𝑚))))
6562, 64breqtrrd 4611 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1))
6646, 9nndivred 10946 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((-𝑁 − 1) / (2↑𝑚)) ∈ ℝ)
67 flbi 12479 . . . . . . . . . . 11 ((((-𝑁 − 1) / (2↑𝑚)) ∈ ℝ ∧ (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ∈ ℤ) → ((⌊‘((-𝑁 − 1) / (2↑𝑚))) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚)) ∧ ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1))))
6866, 34, 67syl2anc 691 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → ((⌊‘((-𝑁 − 1) / (2↑𝑚))) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1) ↔ ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) ≤ ((-𝑁 − 1) / (2↑𝑚)) ∧ ((-𝑁 − 1) / (2↑𝑚)) < ((-(⌊‘(𝑁 / (2↑𝑚))) − 1) + 1))))
6948, 65, 68mpbir2and 959 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (⌊‘((-𝑁 − 1) / (2↑𝑚))) = (-(⌊‘(𝑁 / (2↑𝑚))) − 1))
7069breq2d 4595 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))) ↔ 2 ∥ (-(⌊‘(𝑁 / (2↑𝑚))) − 1)))
7117, 70bitr4d 270 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 2 ∥ -(⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
721, 14, 713bitrd 293 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑚 ∈ (bits‘𝑁) ↔ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
7372notbid 307 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (¬ 𝑚 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
7473pm5.32da 671 . . . 4 (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ∈ (bits‘𝑁)) ↔ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))
75 znegcl 11289 . . . . . 6 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
76 1zzd 11285 . . . . . 6 (𝑁 ∈ ℤ → 1 ∈ ℤ)
7775, 76zsubcld 11363 . . . . 5 (𝑁 ∈ ℤ → (-𝑁 − 1) ∈ ℤ)
7877biantrurd 528 . . . 4 (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))))
7974, 78bitrd 267 . . 3 (𝑁 ∈ ℤ → ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ∈ (bits‘𝑁)) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))))
80 eldif 3550 . . 3 (𝑚 ∈ (ℕ0 ∖ (bits‘𝑁)) ↔ (𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ∈ (bits‘𝑁)))
81 bitsval 14984 . . . 4 (𝑚 ∈ (bits‘(-𝑁 − 1)) ↔ ((-𝑁 − 1) ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))))
82 3anass 1035 . . . 4 (((-𝑁 − 1) ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚)))) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))
8381, 82bitri 263 . . 3 (𝑚 ∈ (bits‘(-𝑁 − 1)) ↔ ((-𝑁 − 1) ∈ ℤ ∧ (𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((-𝑁 − 1) / (2↑𝑚))))))
8479, 80, 833bitr4g 302 . 2 (𝑁 ∈ ℤ → (𝑚 ∈ (ℕ0 ∖ (bits‘𝑁)) ↔ 𝑚 ∈ (bits‘(-𝑁 − 1))))
8584eqrdv 2608 1 (𝑁 ∈ ℤ → (ℕ0 ∖ (bits‘𝑁)) = (bits‘(-𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  cdif 3537   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  cfl 12453  cexp 12722  cdvds 14821  bitscbits 14979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-seq 12664  df-exp 12723  df-dvds 14822  df-bits 14982
This theorem is referenced by:  m1bits  15000  bitsf1  15006
  Copyright terms: Public domain W3C validator