MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsf1 Structured version   Visualization version   GIF version

Theorem bitsf1 15006
Description: The bits function is an injection from to 𝒫 ℕ0. It is obviously not a bijection (by Cantor's theorem canth2 7998), and in fact its range is the set of finite and cofinite subsets of 0. (Contributed by Mario Carneiro, 22-Sep-2016.)
Assertion
Ref Expression
bitsf1 bits:ℤ–1-1→𝒫 ℕ0

Proof of Theorem bitsf1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bitsf 14987 . 2 bits:ℤ⟶𝒫 ℕ0
2 simpl 472 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℤ)
32zcnd 11359 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℂ)
43adantr 480 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑥 ∈ ℂ)
5 simpr 476 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ)
65zcnd 11359 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℂ)
76adantr 480 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑦 ∈ ℂ)
84negcld 10258 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → -𝑥 ∈ ℂ)
97negcld 10258 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → -𝑦 ∈ ℂ)
10 1cnd 9935 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → 1 ∈ ℂ)
11 simprr 792 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘𝑥) = (bits‘𝑦))
1211difeq2d 3690 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑥)) = (ℕ0 ∖ (bits‘𝑦)))
13 bitscmp 14998 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (ℕ0 ∖ (bits‘𝑥)) = (bits‘(-𝑥 − 1)))
1413ad2antrr 758 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑥)) = (bits‘(-𝑥 − 1)))
15 bitscmp 14998 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (ℕ0 ∖ (bits‘𝑦)) = (bits‘(-𝑦 − 1)))
1615ad2antlr 759 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑦)) = (bits‘(-𝑦 − 1)))
1712, 14, 163eqtr3d 2652 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘(-𝑥 − 1)) = (bits‘(-𝑦 − 1)))
18 nnm1nn0 11211 . . . . . . . . . . 11 (-𝑥 ∈ ℕ → (-𝑥 − 1) ∈ ℕ0)
1918ad2antrl 760 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑥 − 1) ∈ ℕ0)
20 fvres 6117 . . . . . . . . . 10 ((-𝑥 − 1) ∈ ℕ0 → ((bits ↾ ℕ0)‘(-𝑥 − 1)) = (bits‘(-𝑥 − 1)))
2119, 20syl 17 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘(-𝑥 − 1)) = (bits‘(-𝑥 − 1)))
22 ominf 8057 . . . . . . . . . . . . . . . . 17 ¬ ω ∈ Fin
23 nn0ennn 12640 . . . . . . . . . . . . . . . . . . 19 0 ≈ ℕ
24 nnenom 12641 . . . . . . . . . . . . . . . . . . 19 ℕ ≈ ω
2523, 24entr2i 7897 . . . . . . . . . . . . . . . . . 18 ω ≈ ℕ0
26 enfii 8062 . . . . . . . . . . . . . . . . . 18 ((ℕ0 ∈ Fin ∧ ω ≈ ℕ0) → ω ∈ Fin)
2725, 26mpan2 703 . . . . . . . . . . . . . . . . 17 (ℕ0 ∈ Fin → ω ∈ Fin)
2822, 27mto 187 . . . . . . . . . . . . . . . 16 ¬ ℕ0 ∈ Fin
29 difinf 8115 . . . . . . . . . . . . . . . 16 ((¬ ℕ0 ∈ Fin ∧ (bits‘𝑥) ∈ Fin) → ¬ (ℕ0 ∖ (bits‘𝑥)) ∈ Fin)
3028, 29mpan 702 . . . . . . . . . . . . . . 15 ((bits‘𝑥) ∈ Fin → ¬ (ℕ0 ∖ (bits‘𝑥)) ∈ Fin)
31 bitsfi 14997 . . . . . . . . . . . . . . . . 17 ((-𝑥 − 1) ∈ ℕ0 → (bits‘(-𝑥 − 1)) ∈ Fin)
3219, 31syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘(-𝑥 − 1)) ∈ Fin)
3314, 32eqeltrd 2688 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑥)) ∈ Fin)
3430, 33nsyl3 132 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (bits‘𝑥) ∈ Fin)
3511, 34eqneltrrd 2708 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (bits‘𝑦) ∈ Fin)
36 bitsfi 14997 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0 → (bits‘𝑦) ∈ Fin)
3735, 36nsyl 134 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ 𝑦 ∈ ℕ0)
385znegcld 11360 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → -𝑦 ∈ ℤ)
39 elznn 11270 . . . . . . . . . . . . . . . . 17 (-𝑦 ∈ ℤ ↔ (-𝑦 ∈ ℝ ∧ (-𝑦 ∈ ℕ ∨ --𝑦 ∈ ℕ0)))
4039simprbi 479 . . . . . . . . . . . . . . . 16 (-𝑦 ∈ ℤ → (-𝑦 ∈ ℕ ∨ --𝑦 ∈ ℕ0))
4138, 40syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-𝑦 ∈ ℕ ∨ --𝑦 ∈ ℕ0))
426negnegd 10262 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → --𝑦 = 𝑦)
4342eleq1d 2672 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (--𝑦 ∈ ℕ0𝑦 ∈ ℕ0))
4443orbi2d 734 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((-𝑦 ∈ ℕ ∨ --𝑦 ∈ ℕ0) ↔ (-𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0)))
4541, 44mpbid 221 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0))
4645adantr 480 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0))
4746ord 391 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (¬ -𝑦 ∈ ℕ → 𝑦 ∈ ℕ0))
4837, 47mt3d 139 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → -𝑦 ∈ ℕ)
49 nnm1nn0 11211 . . . . . . . . . . 11 (-𝑦 ∈ ℕ → (-𝑦 − 1) ∈ ℕ0)
5048, 49syl 17 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑦 − 1) ∈ ℕ0)
51 fvres 6117 . . . . . . . . . 10 ((-𝑦 − 1) ∈ ℕ0 → ((bits ↾ ℕ0)‘(-𝑦 − 1)) = (bits‘(-𝑦 − 1)))
5250, 51syl 17 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘(-𝑦 − 1)) = (bits‘(-𝑦 − 1)))
5317, 21, 523eqtr4d 2654 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾ ℕ0)‘(-𝑦 − 1)))
54 bitsf1o 15005 . . . . . . . . . . 11 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
55 f1of1 6049 . . . . . . . . . . 11 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):ℕ01-1→(𝒫 ℕ0 ∩ Fin))
5654, 55ax-mp 5 . . . . . . . . . 10 (bits ↾ ℕ0):ℕ01-1→(𝒫 ℕ0 ∩ Fin)
57 f1fveq 6420 . . . . . . . . . 10 (((bits ↾ ℕ0):ℕ01-1→(𝒫 ℕ0 ∩ Fin) ∧ ((-𝑥 − 1) ∈ ℕ0 ∧ (-𝑦 − 1) ∈ ℕ0)) → (((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾ ℕ0)‘(-𝑦 − 1)) ↔ (-𝑥 − 1) = (-𝑦 − 1)))
5856, 57mpan 702 . . . . . . . . 9 (((-𝑥 − 1) ∈ ℕ0 ∧ (-𝑦 − 1) ∈ ℕ0) → (((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾ ℕ0)‘(-𝑦 − 1)) ↔ (-𝑥 − 1) = (-𝑦 − 1)))
5919, 50, 58syl2anc 691 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (((bits ↾ ℕ0)‘(-𝑥 − 1)) = ((bits ↾ ℕ0)‘(-𝑦 − 1)) ↔ (-𝑥 − 1) = (-𝑦 − 1)))
6053, 59mpbid 221 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑥 − 1) = (-𝑦 − 1))
618, 9, 10, 60subcan2d 10313 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → -𝑥 = -𝑦)
624, 7, 61neg11d 10283 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (-𝑥 ∈ ℕ ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑥 = 𝑦)
6362expr 641 . . . 4 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ -𝑥 ∈ ℕ) → ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦))
643negnegd 10262 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → --𝑥 = 𝑥)
6564eleq1d 2672 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (--𝑥 ∈ ℕ0𝑥 ∈ ℕ0))
6665biimpa 500 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ --𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
67 simprr 792 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘𝑥) = (bits‘𝑦))
68 fvres 6117 . . . . . . . . 9 (𝑥 ∈ ℕ0 → ((bits ↾ ℕ0)‘𝑥) = (bits‘𝑥))
6968ad2antrl 760 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘𝑥) = (bits‘𝑥))
7015ad2antlr 759 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (ℕ0 ∖ (bits‘𝑦)) = (bits‘(-𝑦 − 1)))
71 bitsfi 14997 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (bits‘𝑥) ∈ Fin)
7271ad2antrl 760 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘𝑥) ∈ Fin)
7367, 72eqeltrrd 2689 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (bits‘𝑦) ∈ Fin)
74 difinf 8115 . . . . . . . . . . . . . 14 ((¬ ℕ0 ∈ Fin ∧ (bits‘𝑦) ∈ Fin) → ¬ (ℕ0 ∖ (bits‘𝑦)) ∈ Fin)
7528, 73, 74sylancr 694 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (ℕ0 ∖ (bits‘𝑦)) ∈ Fin)
7670, 75eqneltrrd 2708 . . . . . . . . . . . 12 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (bits‘(-𝑦 − 1)) ∈ Fin)
77 bitsfi 14997 . . . . . . . . . . . 12 ((-𝑦 − 1) ∈ ℕ0 → (bits‘(-𝑦 − 1)) ∈ Fin)
7876, 77nsyl 134 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ (-𝑦 − 1) ∈ ℕ0)
7978, 49nsyl 134 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ¬ -𝑦 ∈ ℕ)
8045adantr 480 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (-𝑦 ∈ ℕ ∨ 𝑦 ∈ ℕ0))
8180ord 391 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (¬ -𝑦 ∈ ℕ → 𝑦 ∈ ℕ0))
8279, 81mpd 15 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑦 ∈ ℕ0)
83 fvres 6117 . . . . . . . . 9 (𝑦 ∈ ℕ0 → ((bits ↾ ℕ0)‘𝑦) = (bits‘𝑦))
8482, 83syl 17 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘𝑦) = (bits‘𝑦))
8567, 69, 843eqtr4d 2654 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → ((bits ↾ ℕ0)‘𝑥) = ((bits ↾ ℕ0)‘𝑦))
86 simprl 790 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑥 ∈ ℕ0)
87 f1fveq 6420 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1→(𝒫 ℕ0 ∩ Fin) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (((bits ↾ ℕ0)‘𝑥) = ((bits ↾ ℕ0)‘𝑦) ↔ 𝑥 = 𝑦))
8856, 87mpan 702 . . . . . . . 8 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (((bits ↾ ℕ0)‘𝑥) = ((bits ↾ ℕ0)‘𝑦) ↔ 𝑥 = 𝑦))
8986, 82, 88syl2anc 691 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → (((bits ↾ ℕ0)‘𝑥) = ((bits ↾ ℕ0)‘𝑦) ↔ 𝑥 = 𝑦))
9085, 89mpbid 221 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑥 ∈ ℕ0 ∧ (bits‘𝑥) = (bits‘𝑦))) → 𝑥 = 𝑦)
9190expr 641 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ 𝑥 ∈ ℕ0) → ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦))
9266, 91syldan 486 . . . 4 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ --𝑥 ∈ ℕ0) → ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦))
932znegcld 11360 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → -𝑥 ∈ ℤ)
94 elznn 11270 . . . . . 6 (-𝑥 ∈ ℤ ↔ (-𝑥 ∈ ℝ ∧ (-𝑥 ∈ ℕ ∨ --𝑥 ∈ ℕ0)))
9594simprbi 479 . . . . 5 (-𝑥 ∈ ℤ → (-𝑥 ∈ ℕ ∨ --𝑥 ∈ ℕ0))
9693, 95syl 17 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-𝑥 ∈ ℕ ∨ --𝑥 ∈ ℕ0))
9763, 92, 96mpjaodan 823 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦))
9897rgen2a 2960 . 2 𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦)
99 dff13 6416 . 2 (bits:ℤ–1-1→𝒫 ℕ0 ↔ (bits:ℤ⟶𝒫 ℕ0 ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((bits‘𝑥) = (bits‘𝑦) → 𝑥 = 𝑦)))
1001, 98, 99mpbir2an 957 1 bits:ℤ–1-1→𝒫 ℕ0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  cdif 3537  cin 3539  𝒫 cpw 4108   class class class wbr 4583  cres 5040  wf 5800  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  ωcom 6957  cen 7838  Fincfn 7841  cc 9813  cr 9814  1c1 9816  cmin 10145  -cneg 10146  cn 10897  0cn0 11169  cz 11254  bitscbits 14979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-bits 14982
This theorem is referenced by:  bitsuz  15034  eulerpartlemmf  29764
  Copyright terms: Public domain W3C validator