Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitsfi | Structured version Visualization version GIF version |
Description: Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
bitsfi | ⊢ (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 11178 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | 2re 10967 | . . . 4 ⊢ 2 ∈ ℝ | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
4 | 1lt2 11071 | . . . 4 ⊢ 1 < 2 | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 1 < 2) |
6 | expnbnd 12855 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑚 ∈ ℕ 𝑁 < (2↑𝑚)) | |
7 | 1, 3, 5, 6 | syl3anc 1318 | . 2 ⊢ (𝑁 ∈ ℕ0 → ∃𝑚 ∈ ℕ 𝑁 < (2↑𝑚)) |
8 | fzofi 12635 | . . 3 ⊢ (0..^𝑚) ∈ Fin | |
9 | simpl 472 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ ℕ0) | |
10 | nn0uz 11598 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
11 | 9, 10 | syl6eleq 2698 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ (ℤ≥‘0)) |
12 | 2nn 11062 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
13 | 12 | a1i 11 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 2 ∈ ℕ) |
14 | simprl 790 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℕ) | |
15 | 14 | nnnn0d 11228 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℕ0) |
16 | 13, 15 | nnexpcld 12892 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (2↑𝑚) ∈ ℕ) |
17 | 16 | nnzd 11357 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (2↑𝑚) ∈ ℤ) |
18 | simprr 792 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 < (2↑𝑚)) | |
19 | elfzo2 12342 | . . . . 5 ⊢ (𝑁 ∈ (0..^(2↑𝑚)) ↔ (𝑁 ∈ (ℤ≥‘0) ∧ (2↑𝑚) ∈ ℤ ∧ 𝑁 < (2↑𝑚))) | |
20 | 11, 17, 18, 19 | syl3anbrc 1239 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ (0..^(2↑𝑚))) |
21 | 9 | nn0zd 11356 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ ℤ) |
22 | bitsfzo 14995 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑚)) ↔ (bits‘𝑁) ⊆ (0..^𝑚))) | |
23 | 21, 15, 22 | syl2anc 691 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (𝑁 ∈ (0..^(2↑𝑚)) ↔ (bits‘𝑁) ⊆ (0..^𝑚))) |
24 | 20, 23 | mpbid 221 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (bits‘𝑁) ⊆ (0..^𝑚)) |
25 | ssfi 8065 | . . 3 ⊢ (((0..^𝑚) ∈ Fin ∧ (bits‘𝑁) ⊆ (0..^𝑚)) → (bits‘𝑁) ∈ Fin) | |
26 | 8, 24, 25 | sylancr 694 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (bits‘𝑁) ∈ Fin) |
27 | 7, 26 | rexlimddv 3017 | 1 ⊢ (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∈ wcel 1977 ∃wrex 2897 ⊆ wss 3540 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 Fincfn 7841 ℝcr 9814 0cc0 9815 1c1 9816 < clt 9953 ℕcn 10897 2c2 10947 ℕ0cn0 11169 ℤcz 11254 ℤ≥cuz 11563 ..^cfzo 12334 ↑cexp 12722 bitscbits 14979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-fz 12198 df-fzo 12335 df-fl 12455 df-seq 12664 df-exp 12723 df-dvds 14822 df-bits 14982 |
This theorem is referenced by: bitsinv2 15003 bitsf1ocnv 15004 bitsf1 15006 eulerpartlemgc 29751 eulerpartlemgs2 29769 |
Copyright terms: Public domain | W3C validator |