MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem6 Structured version   Visualization version   GIF version

Theorem basellem6 24612
Description: Lemma for basel 24616. The function 𝐺 goes to zero because it is bounded by 1 / 𝑛. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypothesis
Ref Expression
basel.g 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
Assertion
Ref Expression
basellem6 𝐺 ⇝ 0

Proof of Theorem basellem6
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 11599 . . 3 ℕ = (ℤ‘1)
2 1zzd 11285 . . 3 (⊤ → 1 ∈ ℤ)
3 ax-1cn 9873 . . . 4 1 ∈ ℂ
4 divcnv 14424 . . . 4 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
53, 4mp1i 13 . . 3 (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
6 basel.g . . . . 5 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
7 nnex 10903 . . . . . 6 ℕ ∈ V
87mptex 6390 . . . . 5 (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) ∈ V
96, 8eqeltri 2684 . . . 4 𝐺 ∈ V
109a1i 11 . . 3 (⊤ → 𝐺 ∈ V)
11 oveq2 6557 . . . . . 6 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
12 eqid 2610 . . . . . 6 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
13 ovex 6577 . . . . . 6 (1 / 𝑘) ∈ V
1411, 12, 13fvmpt 6191 . . . . 5 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) = (1 / 𝑘))
1514adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) = (1 / 𝑘))
16 nnrecre 10934 . . . . 5 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
1716adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
1815, 17eqeltrd 2688 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) ∈ ℝ)
19 oveq2 6557 . . . . . . . 8 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
2019oveq1d 6564 . . . . . . 7 (𝑛 = 𝑘 → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
2120oveq2d 6565 . . . . . 6 (𝑛 = 𝑘 → (1 / ((2 · 𝑛) + 1)) = (1 / ((2 · 𝑘) + 1)))
22 ovex 6577 . . . . . 6 (1 / ((2 · 𝑘) + 1)) ∈ V
2321, 6, 22fvmpt 6191 . . . . 5 (𝑘 ∈ ℕ → (𝐺𝑘) = (1 / ((2 · 𝑘) + 1)))
2423adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (1 / ((2 · 𝑘) + 1)))
25 2nn 11062 . . . . . . . 8 2 ∈ ℕ
2625a1i 11 . . . . . . 7 (⊤ → 2 ∈ ℕ)
27 nnmulcl 10920 . . . . . . 7 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
2826, 27sylan 487 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
2928peano2nnd 10914 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℕ)
3029nnrecred 10943 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ∈ ℝ)
3124, 30eqeltrd 2688 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
32 nnre 10904 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
3332adantl 481 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
3428nnred 10912 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℝ)
3529nnred 10912 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℝ)
36 nnnn0 11176 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
3736adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
38 nn0addge1 11216 . . . . . . . 8 ((𝑘 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝑘 ≤ (𝑘 + 𝑘))
3933, 37, 38syl2anc 691 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ (𝑘 + 𝑘))
4033recnd 9947 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
41402timesd 11152 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) = (𝑘 + 𝑘))
4239, 41breqtrrd 4611 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ (2 · 𝑘))
4334lep1d 10834 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ≤ ((2 · 𝑘) + 1))
4433, 34, 35, 42, 43letrd 10073 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ ((2 · 𝑘) + 1))
45 nngt0 10926 . . . . . . 7 (𝑘 ∈ ℕ → 0 < 𝑘)
4645adantl 481 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 < 𝑘)
4729nngt0d 10941 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 < ((2 · 𝑘) + 1))
48 lerec 10785 . . . . . 6 (((𝑘 ∈ ℝ ∧ 0 < 𝑘) ∧ (((2 · 𝑘) + 1) ∈ ℝ ∧ 0 < ((2 · 𝑘) + 1))) → (𝑘 ≤ ((2 · 𝑘) + 1) ↔ (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘)))
4933, 46, 35, 47, 48syl22anc 1319 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 ≤ ((2 · 𝑘) + 1) ↔ (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘)))
5044, 49mpbid 221 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘))
5150, 24, 153brtr4d 4615 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘))
5229nnrpd 11746 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℝ+)
5352rpreccld 11758 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ∈ ℝ+)
5453rpge0d 11752 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / ((2 · 𝑘) + 1)))
5554, 24breqtrrd 4611 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))
561, 2, 5, 10, 18, 31, 51, 55climsqz2 14220 . 2 (⊤ → 𝐺 ⇝ 0)
5756trud 1484 1 𝐺 ⇝ 0
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wtru 1476  wcel 1977  Vcvv 3173   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068
This theorem is referenced by:  basellem7  24613  basellem9  24615
  Copyright terms: Public domain W3C validator