MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem9 Structured version   Visualization version   GIF version

Theorem basellem9 24615
Description: Lemma for basel 24616. Since by basellem8 24614 𝐹 is bounded by two expressions that tend to π↑2 / 6, 𝐹 must also go to π↑2 / 6 by the squeeze theorem climsqz 14219. But the series 𝐹 is exactly the partial sums of 𝑘↑-2, so it follows that this is also the value of the infinite sum Σ𝑘 ∈ ℕ(𝑘↑-2). (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
basel.g 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
basel.f 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2)))
basel.h 𝐻 = ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺))
basel.j 𝐽 = (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))
basel.k 𝐾 = (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + 𝐺))
Assertion
Ref Expression
basellem9 Σ𝑘 ∈ ℕ (𝑘↑-2) = ((π↑2) / 6)
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝐺   𝑘,𝐻   𝑘,𝐽,𝑛   𝑘,𝐾
Allowed substitution hints:   𝐺(𝑛)   𝐻(𝑛)   𝐾(𝑛)

Proof of Theorem basellem9
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11599 . . 3 ℕ = (ℤ‘1)
2 1zzd 11285 . . 3 (⊤ → 1 ∈ ℤ)
3 oveq1 6556 . . . . 5 (𝑛 = 𝑘 → (𝑛↑-2) = (𝑘↑-2))
4 eqid 2610 . . . . 5 (𝑛 ∈ ℕ ↦ (𝑛↑-2)) = (𝑛 ∈ ℕ ↦ (𝑛↑-2))
5 ovex 6577 . . . . 5 (𝑘↑-2) ∈ V
63, 4, 5fvmpt 6191 . . . 4 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛↑-2))‘𝑘) = (𝑘↑-2))
76adantl 481 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛↑-2))‘𝑘) = (𝑘↑-2))
8 nnre 10904 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
9 nnne0 10930 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
10 2z 11286 . . . . . . . . . . 11 2 ∈ ℤ
11 znegcl 11289 . . . . . . . . . . 11 (2 ∈ ℤ → -2 ∈ ℤ)
1210, 11ax-mp 5 . . . . . . . . . 10 -2 ∈ ℤ
1312a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → -2 ∈ ℤ)
148, 9, 13reexpclzd 12896 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛↑-2) ∈ ℝ)
1514adantl 481 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝑛↑-2) ∈ ℝ)
1615, 4fmptd 6292 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (𝑛↑-2)):ℕ⟶ℝ)
1716ffvelrnda 6267 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛↑-2))‘𝑘) ∈ ℝ)
187, 17eqeltrrd 2689 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘↑-2) ∈ ℝ)
1918recnd 9947 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘↑-2) ∈ ℂ)
201, 2, 17serfre 12692 . . . . . . . . . . 11 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2))):ℕ⟶ℝ)
21 basel.f . . . . . . . . . . . 12 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2)))
2221feq1i 5949 . . . . . . . . . . 11 (𝐹:ℕ⟶ℝ ↔ seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2))):ℕ⟶ℝ)
2320, 22sylibr 223 . . . . . . . . . 10 (⊤ → 𝐹:ℕ⟶ℝ)
2423ffvelrnda 6267 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
2524recnd 9947 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℂ)
26 remulcl 9900 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
2726adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
28 ovex 6577 . . . . . . . . . . . . . . . 16 ((π↑2) / 6) ∈ V
2928fconst 6004 . . . . . . . . . . . . . . 15 (ℕ × {((π↑2) / 6)}):ℕ⟶{((π↑2) / 6)}
30 pire 24014 . . . . . . . . . . . . . . . . . . 19 π ∈ ℝ
3130resqcli 12811 . . . . . . . . . . . . . . . . . 18 (π↑2) ∈ ℝ
32 6re 10978 . . . . . . . . . . . . . . . . . 18 6 ∈ ℝ
33 6nn 11066 . . . . . . . . . . . . . . . . . . 19 6 ∈ ℕ
3433nnne0i 10932 . . . . . . . . . . . . . . . . . 18 6 ≠ 0
3531, 32, 34redivcli 10671 . . . . . . . . . . . . . . . . 17 ((π↑2) / 6) ∈ ℝ
3635a1i 11 . . . . . . . . . . . . . . . 16 (⊤ → ((π↑2) / 6) ∈ ℝ)
3736snssd 4281 . . . . . . . . . . . . . . 15 (⊤ → {((π↑2) / 6)} ⊆ ℝ)
38 fss 5969 . . . . . . . . . . . . . . 15 (((ℕ × {((π↑2) / 6)}):ℕ⟶{((π↑2) / 6)} ∧ {((π↑2) / 6)} ⊆ ℝ) → (ℕ × {((π↑2) / 6)}):ℕ⟶ℝ)
3929, 37, 38sylancr 694 . . . . . . . . . . . . . 14 (⊤ → (ℕ × {((π↑2) / 6)}):ℕ⟶ℝ)
40 resubcl 10224 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
4140adantl 481 . . . . . . . . . . . . . . 15 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
42 1ex 9914 . . . . . . . . . . . . . . . . 17 1 ∈ V
4342fconst 6004 . . . . . . . . . . . . . . . 16 (ℕ × {1}):ℕ⟶{1}
44 1red 9934 . . . . . . . . . . . . . . . . 17 (⊤ → 1 ∈ ℝ)
4544snssd 4281 . . . . . . . . . . . . . . . 16 (⊤ → {1} ⊆ ℝ)
46 fss 5969 . . . . . . . . . . . . . . . 16 (((ℕ × {1}):ℕ⟶{1} ∧ {1} ⊆ ℝ) → (ℕ × {1}):ℕ⟶ℝ)
4743, 45, 46sylancr 694 . . . . . . . . . . . . . . 15 (⊤ → (ℕ × {1}):ℕ⟶ℝ)
48 2nn 11062 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ
4948a1i 11 . . . . . . . . . . . . . . . . . . 19 (⊤ → 2 ∈ ℕ)
50 nnmulcl 10920 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
5149, 50sylan 487 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
5251peano2nnd 10914 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑛 ∈ ℕ) → ((2 · 𝑛) + 1) ∈ ℕ)
5352nnrecred 10943 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
54 basel.g . . . . . . . . . . . . . . . 16 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
5553, 54fmptd 6292 . . . . . . . . . . . . . . 15 (⊤ → 𝐺:ℕ⟶ℝ)
56 nnex 10903 . . . . . . . . . . . . . . . 16 ℕ ∈ V
5756a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ℕ ∈ V)
58 inidm 3784 . . . . . . . . . . . . . . 15 (ℕ ∩ ℕ) = ℕ
5941, 47, 55, 57, 57, 58off 6810 . . . . . . . . . . . . . 14 (⊤ → ((ℕ × {1}) ∘𝑓𝐺):ℕ⟶ℝ)
6027, 39, 59, 57, 57, 58off 6810 . . . . . . . . . . . . 13 (⊤ → ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺)):ℕ⟶ℝ)
61 basel.h . . . . . . . . . . . . . 14 𝐻 = ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺))
6261feq1i 5949 . . . . . . . . . . . . 13 (𝐻:ℕ⟶ℝ ↔ ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺)):ℕ⟶ℝ)
6360, 62sylibr 223 . . . . . . . . . . . 12 (⊤ → 𝐻:ℕ⟶ℝ)
64 readdcl 9898 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
6564adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
66 negex 10158 . . . . . . . . . . . . . . . 16 -2 ∈ V
6766fconst 6004 . . . . . . . . . . . . . . 15 (ℕ × {-2}):ℕ⟶{-2}
6812zrei 11260 . . . . . . . . . . . . . . . . 17 -2 ∈ ℝ
6968a1i 11 . . . . . . . . . . . . . . . 16 (⊤ → -2 ∈ ℝ)
7069snssd 4281 . . . . . . . . . . . . . . 15 (⊤ → {-2} ⊆ ℝ)
71 fss 5969 . . . . . . . . . . . . . . 15 (((ℕ × {-2}):ℕ⟶{-2} ∧ {-2} ⊆ ℝ) → (ℕ × {-2}):ℕ⟶ℝ)
7267, 70, 71sylancr 694 . . . . . . . . . . . . . 14 (⊤ → (ℕ × {-2}):ℕ⟶ℝ)
7327, 72, 55, 57, 57, 58off 6810 . . . . . . . . . . . . 13 (⊤ → ((ℕ × {-2}) ∘𝑓 · 𝐺):ℕ⟶ℝ)
7465, 47, 73, 57, 57, 58off 6810 . . . . . . . . . . . 12 (⊤ → ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)):ℕ⟶ℝ)
7527, 63, 74, 57, 57, 58off 6810 . . . . . . . . . . 11 (⊤ → (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))):ℕ⟶ℝ)
76 basel.j . . . . . . . . . . . 12 𝐽 = (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))
7776feq1i 5949 . . . . . . . . . . 11 (𝐽:ℕ⟶ℝ ↔ (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))):ℕ⟶ℝ)
7875, 77sylibr 223 . . . . . . . . . 10 (⊤ → 𝐽:ℕ⟶ℝ)
7978ffvelrnda 6267 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝐽𝑛) ∈ ℝ)
8079recnd 9947 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝐽𝑛) ∈ ℂ)
8125, 80npcand 10275 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℕ) → (((𝐹𝑛) − (𝐽𝑛)) + (𝐽𝑛)) = (𝐹𝑛))
8281mpteq2dva 4672 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (((𝐹𝑛) − (𝐽𝑛)) + (𝐽𝑛))) = (𝑛 ∈ ℕ ↦ (𝐹𝑛)))
83 ovex 6577 . . . . . . . 8 ((𝐹𝑛) − (𝐽𝑛)) ∈ V
8483a1i 11 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) − (𝐽𝑛)) ∈ V)
8523feqmptd 6159 . . . . . . . 8 (⊤ → 𝐹 = (𝑛 ∈ ℕ ↦ (𝐹𝑛)))
8678feqmptd 6159 . . . . . . . 8 (⊤ → 𝐽 = (𝑛 ∈ ℕ ↦ (𝐽𝑛)))
8757, 24, 79, 85, 86offval2 6812 . . . . . . 7 (⊤ → (𝐹𝑓𝐽) = (𝑛 ∈ ℕ ↦ ((𝐹𝑛) − (𝐽𝑛))))
8857, 84, 79, 87, 86offval2 6812 . . . . . 6 (⊤ → ((𝐹𝑓𝐽) ∘𝑓 + 𝐽) = (𝑛 ∈ ℕ ↦ (((𝐹𝑛) − (𝐽𝑛)) + (𝐽𝑛))))
8982, 88, 853eqtr4d 2654 . . . . 5 (⊤ → ((𝐹𝑓𝐽) ∘𝑓 + 𝐽) = 𝐹)
9065, 47, 55, 57, 57, 58off 6810 . . . . . . . . . 10 (⊤ → ((ℕ × {1}) ∘𝑓 + 𝐺):ℕ⟶ℝ)
91 recn 9905 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
92 recn 9905 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
93 recn 9905 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
94 subdi 10342 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
9591, 92, 93, 94syl3an 1360 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
9695adantl 481 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
9757, 63, 90, 74, 96caofdi 6831 . . . . . . . . 9 (⊤ → (𝐻𝑓 · (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))) = ((𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + 𝐺)) ∘𝑓 − (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))))
98 basel.k . . . . . . . . . 10 𝐾 = (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + 𝐺))
9998, 76oveq12i 6561 . . . . . . . . 9 (𝐾𝑓𝐽) = ((𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + 𝐺)) ∘𝑓 − (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))))
10097, 99syl6eqr 2662 . . . . . . . 8 (⊤ → (𝐻𝑓 · (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))) = (𝐾𝑓𝐽))
10135recni 9931 . . . . . . . . . . . . . 14 ((π↑2) / 6) ∈ ℂ
1021eqimss2i 3623 . . . . . . . . . . . . . . 15 (ℤ‘1) ⊆ ℕ
103102, 56climconst2 14127 . . . . . . . . . . . . . 14 ((((π↑2) / 6) ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {((π↑2) / 6)}) ⇝ ((π↑2) / 6))
104101, 2, 103sylancr 694 . . . . . . . . . . . . 13 (⊤ → (ℕ × {((π↑2) / 6)}) ⇝ ((π↑2) / 6))
105 ovex 6577 . . . . . . . . . . . . . 14 ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺)) ∈ V
106105a1i 11 . . . . . . . . . . . . 13 (⊤ → ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺)) ∈ V)
107 ax-resscn 9872 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
108 fss 5969 . . . . . . . . . . . . . . . 16 (((ℕ × {1}):ℕ⟶ℝ ∧ ℝ ⊆ ℂ) → (ℕ × {1}):ℕ⟶ℂ)
10947, 107, 108sylancl 693 . . . . . . . . . . . . . . 15 (⊤ → (ℕ × {1}):ℕ⟶ℂ)
110 fss 5969 . . . . . . . . . . . . . . . 16 ((𝐺:ℕ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:ℕ⟶ℂ)
11155, 107, 110sylancl 693 . . . . . . . . . . . . . . 15 (⊤ → 𝐺:ℕ⟶ℂ)
112 ofnegsub 10895 . . . . . . . . . . . . . . 15 ((ℕ ∈ V ∧ (ℕ × {1}):ℕ⟶ℂ ∧ 𝐺:ℕ⟶ℂ) → ((ℕ × {1}) ∘𝑓 + ((ℕ × {-1}) ∘𝑓 · 𝐺)) = ((ℕ × {1}) ∘𝑓𝐺))
11357, 109, 111, 112syl3anc 1318 . . . . . . . . . . . . . 14 (⊤ → ((ℕ × {1}) ∘𝑓 + ((ℕ × {-1}) ∘𝑓 · 𝐺)) = ((ℕ × {1}) ∘𝑓𝐺))
114 neg1cn 11001 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
11554, 114basellem7 24613 . . . . . . . . . . . . . 14 ((ℕ × {1}) ∘𝑓 + ((ℕ × {-1}) ∘𝑓 · 𝐺)) ⇝ 1
116113, 115syl6eqbrr 4623 . . . . . . . . . . . . 13 (⊤ → ((ℕ × {1}) ∘𝑓𝐺) ⇝ 1)
11739ffvelrnda 6267 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {((π↑2) / 6)})‘𝑘) ∈ ℝ)
118117recnd 9947 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {((π↑2) / 6)})‘𝑘) ∈ ℂ)
11959ffvelrnda 6267 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘𝑓𝐺)‘𝑘) ∈ ℝ)
120119recnd 9947 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘𝑓𝐺)‘𝑘) ∈ ℂ)
121 ffn 5958 . . . . . . . . . . . . . . 15 ((ℕ × {((π↑2) / 6)}):ℕ⟶ℝ → (ℕ × {((π↑2) / 6)}) Fn ℕ)
12239, 121syl 17 . . . . . . . . . . . . . 14 (⊤ → (ℕ × {((π↑2) / 6)}) Fn ℕ)
123 fnconstg 6006 . . . . . . . . . . . . . . . 16 (1 ∈ ℤ → (ℕ × {1}) Fn ℕ)
1242, 123syl 17 . . . . . . . . . . . . . . 15 (⊤ → (ℕ × {1}) Fn ℕ)
125 ffn 5958 . . . . . . . . . . . . . . . 16 (𝐺:ℕ⟶ℝ → 𝐺 Fn ℕ)
12655, 125syl 17 . . . . . . . . . . . . . . 15 (⊤ → 𝐺 Fn ℕ)
127124, 126, 57, 57, 58offn 6806 . . . . . . . . . . . . . 14 (⊤ → ((ℕ × {1}) ∘𝑓𝐺) Fn ℕ)
128 eqidd 2611 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {((π↑2) / 6)})‘𝑘) = ((ℕ × {((π↑2) / 6)})‘𝑘))
129 eqidd 2611 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘𝑓𝐺)‘𝑘) = (((ℕ × {1}) ∘𝑓𝐺)‘𝑘))
130122, 127, 57, 57, 58, 128, 129ofval 6804 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺))‘𝑘) = (((ℕ × {((π↑2) / 6)})‘𝑘) · (((ℕ × {1}) ∘𝑓𝐺)‘𝑘)))
1311, 2, 104, 106, 116, 118, 120, 130climmul 14211 . . . . . . . . . . . 12 (⊤ → ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺)) ⇝ (((π↑2) / 6) · 1))
132101mulid1i 9921 . . . . . . . . . . . 12 (((π↑2) / 6) · 1) = ((π↑2) / 6)
133131, 132syl6breq 4624 . . . . . . . . . . 11 (⊤ → ((ℕ × {((π↑2) / 6)}) ∘𝑓 · ((ℕ × {1}) ∘𝑓𝐺)) ⇝ ((π↑2) / 6))
13461, 133syl5eqbr 4618 . . . . . . . . . 10 (⊤ → 𝐻 ⇝ ((π↑2) / 6))
135 ovex 6577 . . . . . . . . . . 11 (𝐻𝑓 · (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))) ∈ V
136135a1i 11 . . . . . . . . . 10 (⊤ → (𝐻𝑓 · (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))) ∈ V)
137 3cn 10972 . . . . . . . . . . . . 13 3 ∈ ℂ
138102, 56climconst2 14127 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {3}) ⇝ 3)
139137, 2, 138sylancr 694 . . . . . . . . . . . 12 (⊤ → (ℕ × {3}) ⇝ 3)
140 ovex 6577 . . . . . . . . . . . . 13 ((ℕ × {3}) ∘𝑓 · 𝐺) ∈ V
141140a1i 11 . . . . . . . . . . . 12 (⊤ → ((ℕ × {3}) ∘𝑓 · 𝐺) ∈ V)
14254basellem6 24612 . . . . . . . . . . . . 13 𝐺 ⇝ 0
143142a1i 11 . . . . . . . . . . . 12 (⊤ → 𝐺 ⇝ 0)
144 3ex 10973 . . . . . . . . . . . . . . . 16 3 ∈ V
145144fconst 6004 . . . . . . . . . . . . . . 15 (ℕ × {3}):ℕ⟶{3}
146 3re 10971 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
147146a1i 11 . . . . . . . . . . . . . . . 16 (⊤ → 3 ∈ ℝ)
148147snssd 4281 . . . . . . . . . . . . . . 15 (⊤ → {3} ⊆ ℝ)
149 fss 5969 . . . . . . . . . . . . . . 15 (((ℕ × {3}):ℕ⟶{3} ∧ {3} ⊆ ℝ) → (ℕ × {3}):ℕ⟶ℝ)
150145, 148, 149sylancr 694 . . . . . . . . . . . . . 14 (⊤ → (ℕ × {3}):ℕ⟶ℝ)
151150ffvelrnda 6267 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {3})‘𝑘) ∈ ℝ)
152151recnd 9947 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {3})‘𝑘) ∈ ℂ)
15355ffvelrnda 6267 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
154153recnd 9947 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
155 ffn 5958 . . . . . . . . . . . . . 14 ((ℕ × {3}):ℕ⟶ℝ → (ℕ × {3}) Fn ℕ)
156150, 155syl 17 . . . . . . . . . . . . 13 (⊤ → (ℕ × {3}) Fn ℕ)
157 eqidd 2611 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {3})‘𝑘) = ((ℕ × {3})‘𝑘))
158 eqidd 2611 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (𝐺𝑘))
159156, 126, 57, 57, 58, 157, 158ofval 6804 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {3}) ∘𝑓 · 𝐺)‘𝑘) = (((ℕ × {3})‘𝑘) · (𝐺𝑘)))
1601, 2, 139, 141, 143, 152, 154, 159climmul 14211 . . . . . . . . . . 11 (⊤ → ((ℕ × {3}) ∘𝑓 · 𝐺) ⇝ (3 · 0))
161137mul01i 10105 . . . . . . . . . . 11 (3 · 0) = 0
162160, 161syl6breq 4624 . . . . . . . . . 10 (⊤ → ((ℕ × {3}) ∘𝑓 · 𝐺) ⇝ 0)
16363ffvelrnda 6267 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℝ)
164163recnd 9947 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℂ)
16527, 150, 55, 57, 57, 58off 6810 . . . . . . . . . . . 12 (⊤ → ((ℕ × {3}) ∘𝑓 · 𝐺):ℕ⟶ℝ)
166165ffvelrnda 6267 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {3}) ∘𝑓 · 𝐺)‘𝑘) ∈ ℝ)
167166recnd 9947 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {3}) ∘𝑓 · 𝐺)‘𝑘) ∈ ℂ)
168 ffn 5958 . . . . . . . . . . . 12 (𝐻:ℕ⟶ℝ → 𝐻 Fn ℕ)
16963, 168syl 17 . . . . . . . . . . 11 (⊤ → 𝐻 Fn ℕ)
17041, 90, 74, 57, 57, 58off 6810 . . . . . . . . . . . 12 (⊤ → (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))):ℕ⟶ℝ)
171 ffn 5958 . . . . . . . . . . . 12 ((((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))):ℕ⟶ℝ → (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))) Fn ℕ)
172170, 171syl 17 . . . . . . . . . . 11 (⊤ → (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))) Fn ℕ)
173 eqidd 2611 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = (𝐻𝑘))
174154mulid2d 9937 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 · (𝐺𝑘)) = (𝐺𝑘))
175 2cn 10968 . . . . . . . . . . . . . . . . . 18 2 ∈ ℂ
176 mulneg1 10345 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ (𝐺𝑘) ∈ ℂ) → (-2 · (𝐺𝑘)) = -(2 · (𝐺𝑘)))
177175, 154, 176sylancr 694 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (-2 · (𝐺𝑘)) = -(2 · (𝐺𝑘)))
178177negeqd 10154 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → -(-2 · (𝐺𝑘)) = --(2 · (𝐺𝑘)))
179 mulcl 9899 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ (𝐺𝑘) ∈ ℂ) → (2 · (𝐺𝑘)) ∈ ℂ)
180175, 154, 179sylancr 694 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · (𝐺𝑘)) ∈ ℂ)
181180negnegd 10262 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → --(2 · (𝐺𝑘)) = (2 · (𝐺𝑘)))
182178, 181eqtr2d 2645 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · (𝐺𝑘)) = -(-2 · (𝐺𝑘)))
183174, 182oveq12d 6567 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 · (𝐺𝑘)) + (2 · (𝐺𝑘))) = ((𝐺𝑘) + -(-2 · (𝐺𝑘))))
184 remulcl 9900 . . . . . . . . . . . . . . . . 17 ((-2 ∈ ℝ ∧ (𝐺𝑘) ∈ ℝ) → (-2 · (𝐺𝑘)) ∈ ℝ)
18568, 153, 184sylancr 694 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → (-2 · (𝐺𝑘)) ∈ ℝ)
186185recnd 9947 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → (-2 · (𝐺𝑘)) ∈ ℂ)
187154, 186negsubd 10277 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) + -(-2 · (𝐺𝑘))) = ((𝐺𝑘) − (-2 · (𝐺𝑘))))
188183, 187eqtrd 2644 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 · (𝐺𝑘)) + (2 · (𝐺𝑘))) = ((𝐺𝑘) − (-2 · (𝐺𝑘))))
189 df-3 10957 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
190 ax-1cn 9873 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
191175, 190addcomi 10106 . . . . . . . . . . . . . . . 16 (2 + 1) = (1 + 2)
192189, 191eqtri 2632 . . . . . . . . . . . . . . 15 3 = (1 + 2)
193192oveq1i 6559 . . . . . . . . . . . . . 14 (3 · (𝐺𝑘)) = ((1 + 2) · (𝐺𝑘))
194 1cnd 9935 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
195175a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
196194, 195, 154adddird 9944 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 + 2) · (𝐺𝑘)) = ((1 · (𝐺𝑘)) + (2 · (𝐺𝑘))))
197193, 196syl5eq 2656 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (3 · (𝐺𝑘)) = ((1 · (𝐺𝑘)) + (2 · (𝐺𝑘))))
198194, 154, 186pnpcand 10308 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 + (𝐺𝑘)) − (1 + (-2 · (𝐺𝑘)))) = ((𝐺𝑘) − (-2 · (𝐺𝑘))))
199188, 197, 1983eqtr4rd 2655 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 + (𝐺𝑘)) − (1 + (-2 · (𝐺𝑘)))) = (3 · (𝐺𝑘)))
200124, 126, 57, 57, 58offn 6806 . . . . . . . . . . . . 13 (⊤ → ((ℕ × {1}) ∘𝑓 + 𝐺) Fn ℕ)
20112a1i 11 . . . . . . . . . . . . . . . 16 (⊤ → -2 ∈ ℤ)
202 fnconstg 6006 . . . . . . . . . . . . . . . 16 (-2 ∈ ℤ → (ℕ × {-2}) Fn ℕ)
203201, 202syl 17 . . . . . . . . . . . . . . 15 (⊤ → (ℕ × {-2}) Fn ℕ)
204203, 126, 57, 57, 58offn 6806 . . . . . . . . . . . . . 14 (⊤ → ((ℕ × {-2}) ∘𝑓 · 𝐺) Fn ℕ)
205124, 204, 57, 57, 58offn 6806 . . . . . . . . . . . . 13 (⊤ → ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)) Fn ℕ)
20657, 44, 126, 158ofc1 6818 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘𝑓 + 𝐺)‘𝑘) = (1 + (𝐺𝑘)))
20757, 69, 126, 158ofc1 6818 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {-2}) ∘𝑓 · 𝐺)‘𝑘) = (-2 · (𝐺𝑘)))
20857, 44, 204, 207ofc1 6818 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))‘𝑘) = (1 + (-2 · (𝐺𝑘))))
209200, 205, 57, 57, 58, 206, 208ofval 6804 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))‘𝑘) = ((1 + (𝐺𝑘)) − (1 + (-2 · (𝐺𝑘)))))
21057, 147, 126, 158ofc1 6818 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {3}) ∘𝑓 · 𝐺)‘𝑘) = (3 · (𝐺𝑘)))
211199, 209, 2103eqtr4d 2654 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))‘𝑘) = (((ℕ × {3}) ∘𝑓 · 𝐺)‘𝑘))
212169, 172, 57, 57, 58, 173, 211ofval 6804 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐻𝑓 · (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))))‘𝑘) = ((𝐻𝑘) · (((ℕ × {3}) ∘𝑓 · 𝐺)‘𝑘)))
2131, 2, 134, 136, 162, 164, 167, 212climmul 14211 . . . . . . . . 9 (⊤ → (𝐻𝑓 · (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))) ⇝ (((π↑2) / 6) · 0))
214101mul01i 10105 . . . . . . . . 9 (((π↑2) / 6) · 0) = 0
215213, 214syl6breq 4624 . . . . . . . 8 (⊤ → (𝐻𝑓 · (((ℕ × {1}) ∘𝑓 + 𝐺) ∘𝑓 − ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))) ⇝ 0)
216100, 215eqbrtrrd 4607 . . . . . . 7 (⊤ → (𝐾𝑓𝐽) ⇝ 0)
217 ovex 6577 . . . . . . . 8 (𝐹𝑓𝐽) ∈ V
218217a1i 11 . . . . . . 7 (⊤ → (𝐹𝑓𝐽) ∈ V)
21927, 63, 90, 57, 57, 58off 6810 . . . . . . . . . 10 (⊤ → (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + 𝐺)):ℕ⟶ℝ)
22098feq1i 5949 . . . . . . . . . 10 (𝐾:ℕ⟶ℝ ↔ (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + 𝐺)):ℕ⟶ℝ)
221219, 220sylibr 223 . . . . . . . . 9 (⊤ → 𝐾:ℕ⟶ℝ)
22241, 221, 78, 57, 57, 58off 6810 . . . . . . . 8 (⊤ → (𝐾𝑓𝐽):ℕ⟶ℝ)
223222ffvelrnda 6267 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐾𝑓𝐽)‘𝑘) ∈ ℝ)
22441, 23, 78, 57, 57, 58off 6810 . . . . . . . 8 (⊤ → (𝐹𝑓𝐽):ℕ⟶ℝ)
225224ffvelrnda 6267 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓𝐽)‘𝑘) ∈ ℝ)
22623ffvelrnda 6267 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
227221ffvelrnda 6267 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐾𝑘) ∈ ℝ)
22878ffvelrnda 6267 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐽𝑘) ∈ ℝ)
229 eqid 2610 . . . . . . . . . . . 12 ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)
23054, 21, 61, 76, 98, 229basellem8 24614 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝐽𝑘) ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝐾𝑘)))
231230adantl 481 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐽𝑘) ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝐾𝑘)))
232231simprd 478 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ≤ (𝐾𝑘))
233226, 227, 228, 232lesub1dd 10522 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) − (𝐽𝑘)) ≤ ((𝐾𝑘) − (𝐽𝑘)))
234 ffn 5958 . . . . . . . . . 10 (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ)
23523, 234syl 17 . . . . . . . . 9 (⊤ → 𝐹 Fn ℕ)
236 ffn 5958 . . . . . . . . . 10 (𝐽:ℕ⟶ℝ → 𝐽 Fn ℕ)
23778, 236syl 17 . . . . . . . . 9 (⊤ → 𝐽 Fn ℕ)
238 eqidd 2611 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
239 eqidd 2611 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐽𝑘) = (𝐽𝑘))
240235, 237, 57, 57, 58, 238, 239ofval 6804 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓𝐽)‘𝑘) = ((𝐹𝑘) − (𝐽𝑘)))
241 ffn 5958 . . . . . . . . . 10 (𝐾:ℕ⟶ℝ → 𝐾 Fn ℕ)
242221, 241syl 17 . . . . . . . . 9 (⊤ → 𝐾 Fn ℕ)
243 eqidd 2611 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐾𝑘) = (𝐾𝑘))
244242, 237, 57, 57, 58, 243, 239ofval 6804 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐾𝑓𝐽)‘𝑘) = ((𝐾𝑘) − (𝐽𝑘)))
245233, 240, 2443brtr4d 4615 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓𝐽)‘𝑘) ≤ ((𝐾𝑓𝐽)‘𝑘))
246231simpld 474 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐽𝑘) ≤ (𝐹𝑘))
247226, 228subge0d 10496 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝑘) − (𝐽𝑘)) ↔ (𝐽𝑘) ≤ (𝐹𝑘)))
248246, 247mpbird 246 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑘) − (𝐽𝑘)))
249248, 240breqtrrd 4611 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑓𝐽)‘𝑘))
2501, 2, 216, 218, 223, 225, 245, 249climsqz2 14220 . . . . . 6 (⊤ → (𝐹𝑓𝐽) ⇝ 0)
251 ovex 6577 . . . . . . 7 ((𝐹𝑓𝐽) ∘𝑓 + 𝐽) ∈ V
252251a1i 11 . . . . . 6 (⊤ → ((𝐹𝑓𝐽) ∘𝑓 + 𝐽) ∈ V)
253 ovex 6577 . . . . . . . . . 10 (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))) ∈ V
254253a1i 11 . . . . . . . . 9 (⊤ → (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))) ∈ V)
25568recni 9931 . . . . . . . . . . 11 -2 ∈ ℂ
25654, 255basellem7 24613 . . . . . . . . . 10 ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)) ⇝ 1
257256a1i 11 . . . . . . . . 9 (⊤ → ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)) ⇝ 1)
25874ffvelrnda 6267 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))‘𝑘) ∈ ℝ)
259258recnd 9947 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))‘𝑘) ∈ ℂ)
260 eqidd 2611 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))‘𝑘) = (((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))‘𝑘))
261169, 205, 57, 57, 58, 173, 260ofval 6804 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺)))‘𝑘) = ((𝐻𝑘) · (((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))‘𝑘)))
2621, 2, 134, 254, 257, 164, 259, 261climmul 14211 . . . . . . . 8 (⊤ → (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))) ⇝ (((π↑2) / 6) · 1))
263262, 132syl6breq 4624 . . . . . . 7 (⊤ → (𝐻𝑓 · ((ℕ × {1}) ∘𝑓 + ((ℕ × {-2}) ∘𝑓 · 𝐺))) ⇝ ((π↑2) / 6))
26476, 263syl5eqbr 4618 . . . . . 6 (⊤ → 𝐽 ⇝ ((π↑2) / 6))
265225recnd 9947 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓𝐽)‘𝑘) ∈ ℂ)
266228recnd 9947 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐽𝑘) ∈ ℂ)
267 ffn 5958 . . . . . . . 8 ((𝐹𝑓𝐽):ℕ⟶ℝ → (𝐹𝑓𝐽) Fn ℕ)
268224, 267syl 17 . . . . . . 7 (⊤ → (𝐹𝑓𝐽) Fn ℕ)
269 eqidd 2611 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓𝐽)‘𝑘) = ((𝐹𝑓𝐽)‘𝑘))
270268, 237, 57, 57, 58, 269, 239ofval 6804 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (((𝐹𝑓𝐽) ∘𝑓 + 𝐽)‘𝑘) = (((𝐹𝑓𝐽)‘𝑘) + (𝐽𝑘)))
2711, 2, 250, 252, 264, 265, 266, 270climadd 14210 . . . . 5 (⊤ → ((𝐹𝑓𝐽) ∘𝑓 + 𝐽) ⇝ (0 + ((π↑2) / 6)))
27289, 271eqbrtrrd 4607 . . . 4 (⊤ → 𝐹 ⇝ (0 + ((π↑2) / 6)))
273101addid2i 10103 . . . 4 (0 + ((π↑2) / 6)) = ((π↑2) / 6)
274272, 21, 2733brtr3g 4616 . . 3 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2))) ⇝ ((π↑2) / 6))
2751, 2, 7, 19, 274isumclim 14330 . 2 (⊤ → Σ𝑘 ∈ ℕ (𝑘↑-2) = ((π↑2) / 6))
276275trud 1484 1 Σ𝑘 ∈ ℕ (𝑘↑-2) = ((π↑2) / 6)
Colors of variables: wff setvar class
Syntax hints:  wa 383  w3a 1031   = wceq 1475  wtru 1476  wcel 1977  Vcvv 3173  wss 3540  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  3c3 10948  6c6 10951  cz 11254  cuz 11563  seqcseq 12663  cexp 12722  cli 14063  Σcsu 14264  πcpi 14636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-tan 14641  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-0p 23243  df-limc 23436  df-dv 23437  df-ply 23748  df-idp 23749  df-coe 23750  df-dgr 23751  df-quot 23850
This theorem is referenced by:  basel  24616
  Copyright terms: Public domain W3C validator