Proof of Theorem 4cycl4dv
Step | Hyp | Ref
| Expression |
1 | | usgrafun 25878 |
. . . . 5
⊢ (𝑉 USGrph 𝐸 → Fun 𝐸) |
2 | | 4pos 10993 |
. . . . . . . . . . . . . . 15
⊢ 0 <
4 |
3 | | breq2 4587 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝐹) = 4
→ (0 < (#‘𝐹)
↔ 0 < 4)) |
4 | 2, 3 | mpbiri 247 |
. . . . . . . . . . . . . 14
⊢
((#‘𝐹) = 4
→ 0 < (#‘𝐹)) |
5 | | 0nn0 11184 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℕ0 |
6 | 4, 5 | jctil 558 |
. . . . . . . . . . . . 13
⊢
((#‘𝐹) = 4
→ (0 ∈ ℕ0 ∧ 0 < (#‘𝐹))) |
7 | | nvnencycllem 26171 |
. . . . . . . . . . . . 13
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (0 ∈ ℕ0 ∧
0 < (#‘𝐹))) →
((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} → {𝐴, 𝐵} ∈ ran 𝐸)) |
8 | 6, 7 | sylan2 490 |
. . . . . . . . . . . 12
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (#‘𝐹) = 4) → ((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} → {𝐴, 𝐵} ∈ ran 𝐸)) |
9 | | 1lt4 11076 |
. . . . . . . . . . . . . . 15
⊢ 1 <
4 |
10 | | breq2 4587 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝐹) = 4
→ (1 < (#‘𝐹)
↔ 1 < 4)) |
11 | 9, 10 | mpbiri 247 |
. . . . . . . . . . . . . 14
⊢
((#‘𝐹) = 4
→ 1 < (#‘𝐹)) |
12 | | 1nn0 11185 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℕ0 |
13 | 11, 12 | jctil 558 |
. . . . . . . . . . . . 13
⊢
((#‘𝐹) = 4
→ (1 ∈ ℕ0 ∧ 1 < (#‘𝐹))) |
14 | | nvnencycllem 26171 |
. . . . . . . . . . . . 13
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (1 ∈ ℕ0 ∧
1 < (#‘𝐹))) →
((𝐸‘(𝐹‘1)) = {𝐵, 𝐶} → {𝐵, 𝐶} ∈ ran 𝐸)) |
15 | 13, 14 | sylan2 490 |
. . . . . . . . . . . 12
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (#‘𝐹) = 4) → ((𝐸‘(𝐹‘1)) = {𝐵, 𝐶} → {𝐵, 𝐶} ∈ ran 𝐸)) |
16 | 8, 15 | anim12d 584 |
. . . . . . . . . . 11
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (#‘𝐹) = 4) → (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) → ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸))) |
17 | | 2lt4 11075 |
. . . . . . . . . . . . . . 15
⊢ 2 <
4 |
18 | | breq2 4587 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝐹) = 4
→ (2 < (#‘𝐹)
↔ 2 < 4)) |
19 | 17, 18 | mpbiri 247 |
. . . . . . . . . . . . . 14
⊢
((#‘𝐹) = 4
→ 2 < (#‘𝐹)) |
20 | | 2nn0 11186 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℕ0 |
21 | 19, 20 | jctil 558 |
. . . . . . . . . . . . 13
⊢
((#‘𝐹) = 4
→ (2 ∈ ℕ0 ∧ 2 < (#‘𝐹))) |
22 | | nvnencycllem 26171 |
. . . . . . . . . . . . 13
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (2 ∈ ℕ0 ∧
2 < (#‘𝐹))) →
((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} → {𝐶, 𝐷} ∈ ran 𝐸)) |
23 | 21, 22 | sylan2 490 |
. . . . . . . . . . . 12
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (#‘𝐹) = 4) → ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} → {𝐶, 𝐷} ∈ ran 𝐸)) |
24 | | 3lt4 11074 |
. . . . . . . . . . . . . . 15
⊢ 3 <
4 |
25 | | breq2 4587 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝐹) = 4
→ (3 < (#‘𝐹)
↔ 3 < 4)) |
26 | 24, 25 | mpbiri 247 |
. . . . . . . . . . . . . 14
⊢
((#‘𝐹) = 4
→ 3 < (#‘𝐹)) |
27 | | 3nn0 11187 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
ℕ0 |
28 | 26, 27 | jctil 558 |
. . . . . . . . . . . . 13
⊢
((#‘𝐹) = 4
→ (3 ∈ ℕ0 ∧ 3 < (#‘𝐹))) |
29 | | nvnencycllem 26171 |
. . . . . . . . . . . . 13
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (3 ∈ ℕ0 ∧
3 < (#‘𝐹))) →
((𝐸‘(𝐹‘3)) = {𝐷, 𝐴} → {𝐷, 𝐴} ∈ ran 𝐸)) |
30 | 28, 29 | sylan2 490 |
. . . . . . . . . . . 12
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (#‘𝐹) = 4) → ((𝐸‘(𝐹‘3)) = {𝐷, 𝐴} → {𝐷, 𝐴} ∈ ran 𝐸)) |
31 | 23, 30 | anim12d 584 |
. . . . . . . . . . 11
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (#‘𝐹) = 4) → (((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}) → ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸))) |
32 | 16, 31 | anim12d 584 |
. . . . . . . . . 10
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (#‘𝐹) = 4) → ((((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)))) |
33 | 32 | ex 449 |
. . . . . . . . 9
⊢ ((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) → ((#‘𝐹) = 4 → ((((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸))))) |
34 | 33 | expcom 450 |
. . . . . . . 8
⊢ (𝐹 ∈ Word dom 𝐸 → (Fun 𝐸 → ((#‘𝐹) = 4 → ((((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)))))) |
35 | 34 | com23 84 |
. . . . . . 7
⊢ (𝐹 ∈ Word dom 𝐸 → ((#‘𝐹) = 4 → (Fun 𝐸 → ((((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)))))) |
36 | 35 | imp 444 |
. . . . . 6
⊢ ((𝐹 ∈ Word dom 𝐸 ∧ (#‘𝐹) = 4) → (Fun 𝐸 → ((((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸))))) |
37 | 36 | 3adant2 1073 |
. . . . 5
⊢ ((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4) → (Fun 𝐸 → ((((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸))))) |
38 | 1, 37 | mpan9 485 |
. . . 4
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) → ((((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)))) |
39 | 38 | imp 444 |
. . 3
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸))) |
40 | | simpl 472 |
. . . 4
⊢
(((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) ∧ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})))) → (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸))) |
41 | | usgraedgrn 25910 |
. . . . . . . . . . 11
⊢ ((𝑉 USGrph 𝐸 ∧ {𝐴, 𝐵} ∈ ran 𝐸) → 𝐴 ≠ 𝐵) |
42 | 41 | ex 449 |
. . . . . . . . . 10
⊢ (𝑉 USGrph 𝐸 → ({𝐴, 𝐵} ∈ ran 𝐸 → 𝐴 ≠ 𝐵)) |
43 | 42 | ad2antrr 758 |
. . . . . . . . 9
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → ({𝐴, 𝐵} ∈ ran 𝐸 → 𝐴 ≠ 𝐵)) |
44 | 43 | com12 32 |
. . . . . . . 8
⊢ ({𝐴, 𝐵} ∈ ran 𝐸 → (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → 𝐴 ≠ 𝐵)) |
45 | 44 | ad2antrr 758 |
. . . . . . 7
⊢ ((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) → (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → 𝐴 ≠ 𝐵)) |
46 | 45 | imp 444 |
. . . . . 6
⊢
(((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) ∧ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})))) → 𝐴 ≠ 𝐵) |
47 | | preq1 4212 |
. . . . . . . . . . . . . 14
⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) |
48 | 47 | eqeq2d 2620 |
. . . . . . . . . . . . 13
⊢ (𝐴 = 𝐶 → ((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ↔ (𝐸‘(𝐹‘0)) = {𝐶, 𝐵})) |
49 | | prcom 4211 |
. . . . . . . . . . . . . . 15
⊢ {𝐵, 𝐶} = {𝐶, 𝐵} |
50 | 49 | eqeq2i 2622 |
. . . . . . . . . . . . . 14
⊢ ((𝐸‘(𝐹‘1)) = {𝐵, 𝐶} ↔ (𝐸‘(𝐹‘1)) = {𝐶, 𝐵}) |
51 | 50 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝐴 = 𝐶 → ((𝐸‘(𝐹‘1)) = {𝐵, 𝐶} ↔ (𝐸‘(𝐹‘1)) = {𝐶, 𝐵})) |
52 | 48, 51 | anbi12d 743 |
. . . . . . . . . . . 12
⊢ (𝐴 = 𝐶 → (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ↔ ((𝐸‘(𝐹‘0)) = {𝐶, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐶, 𝐵}))) |
53 | 52 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐴 = 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4))) → (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ↔ ((𝐸‘(𝐹‘0)) = {𝐶, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐶, 𝐵}))) |
54 | | eqtr3 2631 |
. . . . . . . . . . . . 13
⊢ (((𝐸‘(𝐹‘0)) = {𝐶, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐶, 𝐵}) → (𝐸‘(𝐹‘0)) = (𝐸‘(𝐹‘1))) |
55 | | usgraf1 25889 |
. . . . . . . . . . . . . . 15
⊢ (𝑉 USGrph 𝐸 → 𝐸:dom 𝐸–1-1→ran 𝐸) |
56 | | wrdf 13165 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ Word dom 𝐸 → 𝐹:(0..^(#‘𝐹))⟶dom 𝐸) |
57 | | oveq2 6557 |
. . . . . . . . . . . . . . . . . . 19
⊢
((#‘𝐹) = 4
→ (0..^(#‘𝐹)) =
(0..^4)) |
58 | 57 | feq2d 5944 |
. . . . . . . . . . . . . . . . . 18
⊢
((#‘𝐹) = 4
→ (𝐹:(0..^(#‘𝐹))⟶dom 𝐸 ↔ 𝐹:(0..^4)⟶dom 𝐸)) |
59 | | 4nn 11064 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 4 ∈
ℕ |
60 | | lbfzo0 12375 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 ∈
(0..^4) ↔ 4 ∈ ℕ) |
61 | 59, 60 | mpbir 220 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 ∈
(0..^4) |
62 | | ffvelrn 6265 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹:(0..^4)⟶dom 𝐸 ∧ 0 ∈ (0..^4)) →
(𝐹‘0) ∈ dom
𝐸) |
63 | 61, 62 | mpan2 703 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹:(0..^4)⟶dom 𝐸 → (𝐹‘0) ∈ dom 𝐸) |
64 | | elfzo0 12376 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 ∈
(0..^4) ↔ (1 ∈ ℕ0 ∧ 4 ∈ ℕ ∧ 1
< 4)) |
65 | 12, 59, 9, 64 | mpbir3an 1237 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ∈
(0..^4) |
66 | | ffvelrn 6265 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹:(0..^4)⟶dom 𝐸 ∧ 1 ∈ (0..^4)) →
(𝐹‘1) ∈ dom
𝐸) |
67 | 65, 66 | mpan2 703 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹:(0..^4)⟶dom 𝐸 → (𝐹‘1) ∈ dom 𝐸) |
68 | 63, 67 | jca 553 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:(0..^4)⟶dom 𝐸 → ((𝐹‘0) ∈ dom 𝐸 ∧ (𝐹‘1) ∈ dom 𝐸)) |
69 | 58, 68 | syl6bi 242 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘𝐹) = 4
→ (𝐹:(0..^(#‘𝐹))⟶dom 𝐸 → ((𝐹‘0) ∈ dom 𝐸 ∧ (𝐹‘1) ∈ dom 𝐸))) |
70 | 56, 69 | mpan9 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ Word dom 𝐸 ∧ (#‘𝐹) = 4) → ((𝐹‘0) ∈ dom 𝐸 ∧ (𝐹‘1) ∈ dom 𝐸)) |
71 | 70 | 3adant2 1073 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4) → ((𝐹‘0) ∈ dom 𝐸 ∧ (𝐹‘1) ∈ dom 𝐸)) |
72 | | f1veqaeq 6418 |
. . . . . . . . . . . . . . 15
⊢ ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ ((𝐹‘0) ∈ dom 𝐸 ∧ (𝐹‘1) ∈ dom 𝐸)) → ((𝐸‘(𝐹‘0)) = (𝐸‘(𝐹‘1)) → (𝐹‘0) = (𝐹‘1))) |
73 | 55, 71, 72 | syl2an 493 |
. . . . . . . . . . . . . 14
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) → ((𝐸‘(𝐹‘0)) = (𝐸‘(𝐹‘1)) → (𝐹‘0) = (𝐹‘1))) |
74 | | df-f1 5809 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐸 ↔ (𝐹:(0..^(#‘𝐹))⟶dom 𝐸 ∧ Fun ◡𝐹)) |
75 | | f1eq2 6010 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((0..^(#‘𝐹)) =
(0..^4) → (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐸 ↔ 𝐹:(0..^4)–1-1→dom 𝐸)) |
76 | 57, 75 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((#‘𝐹) = 4
→ (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐸 ↔ 𝐹:(0..^4)–1-1→dom 𝐸)) |
77 | | f1veqaeq 6418 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹:(0..^4)–1-1→dom 𝐸 ∧ (0 ∈ (0..^4) ∧ 1 ∈
(0..^4))) → ((𝐹‘0) = (𝐹‘1) → 0 = 1)) |
78 | 61, 65, 77 | mpanr12 717 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹:(0..^4)–1-1→dom 𝐸 → ((𝐹‘0) = (𝐹‘1) → 0 = 1)) |
79 | | ax-1ne0 9884 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ≠
0 |
80 | 79 | nesymi 2839 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ¬ 0
= 1 |
81 | 80 | pm2.21i 115 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0 = 1
→ 𝐴 ≠ 𝐶) |
82 | 78, 81 | syl6 34 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹:(0..^4)–1-1→dom 𝐸 → ((𝐹‘0) = (𝐹‘1) → 𝐴 ≠ 𝐶)) |
83 | 76, 82 | syl6bi 242 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((#‘𝐹) = 4
→ (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐸 → ((𝐹‘0) = (𝐹‘1) → 𝐴 ≠ 𝐶))) |
84 | 83 | com12 32 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐸 → ((#‘𝐹) = 4 → ((𝐹‘0) = (𝐹‘1) → 𝐴 ≠ 𝐶))) |
85 | 74, 84 | sylbir 224 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹:(0..^(#‘𝐹))⟶dom 𝐸 ∧ Fun ◡𝐹) → ((#‘𝐹) = 4 → ((𝐹‘0) = (𝐹‘1) → 𝐴 ≠ 𝐶))) |
86 | 85 | ex 449 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:(0..^(#‘𝐹))⟶dom 𝐸 → (Fun ◡𝐹 → ((#‘𝐹) = 4 → ((𝐹‘0) = (𝐹‘1) → 𝐴 ≠ 𝐶)))) |
87 | 56, 86 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Word dom 𝐸 → (Fun ◡𝐹 → ((#‘𝐹) = 4 → ((𝐹‘0) = (𝐹‘1) → 𝐴 ≠ 𝐶)))) |
88 | 87 | 3imp 1249 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4) → ((𝐹‘0) = (𝐹‘1) → 𝐴 ≠ 𝐶)) |
89 | 88 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) → ((𝐹‘0) = (𝐹‘1) → 𝐴 ≠ 𝐶)) |
90 | 73, 89 | syld 46 |
. . . . . . . . . . . . 13
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) → ((𝐸‘(𝐹‘0)) = (𝐸‘(𝐹‘1)) → 𝐴 ≠ 𝐶)) |
91 | 54, 90 | syl5 33 |
. . . . . . . . . . . 12
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) → (((𝐸‘(𝐹‘0)) = {𝐶, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐶, 𝐵}) → 𝐴 ≠ 𝐶)) |
92 | 91 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐴 = 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4))) → (((𝐸‘(𝐹‘0)) = {𝐶, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐶, 𝐵}) → 𝐴 ≠ 𝐶)) |
93 | 53, 92 | sylbid 229 |
. . . . . . . . . 10
⊢ ((𝐴 = 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4))) → (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) → 𝐴 ≠ 𝐶)) |
94 | 93 | adantrd 483 |
. . . . . . . . 9
⊢ ((𝐴 = 𝐶 ∧ (𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4))) → ((((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})) → 𝐴 ≠ 𝐶)) |
95 | 94 | expimpd 627 |
. . . . . . . 8
⊢ (𝐴 = 𝐶 → (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → 𝐴 ≠ 𝐶)) |
96 | | ax-1 6 |
. . . . . . . 8
⊢ (𝐴 ≠ 𝐶 → (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → 𝐴 ≠ 𝐶)) |
97 | 95, 96 | pm2.61ine 2865 |
. . . . . . 7
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → 𝐴 ≠ 𝐶) |
98 | 97 | adantl 481 |
. . . . . 6
⊢
(((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) ∧ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})))) → 𝐴 ≠ 𝐶) |
99 | | usgraedgrn 25910 |
. . . . . . . . . . . . 13
⊢ ((𝑉 USGrph 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸) → 𝐷 ≠ 𝐴) |
100 | 99 | necomd 2837 |
. . . . . . . . . . . 12
⊢ ((𝑉 USGrph 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸) → 𝐴 ≠ 𝐷) |
101 | 100 | ex 449 |
. . . . . . . . . . 11
⊢ (𝑉 USGrph 𝐸 → ({𝐷, 𝐴} ∈ ran 𝐸 → 𝐴 ≠ 𝐷)) |
102 | 101 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → ({𝐷, 𝐴} ∈ ran 𝐸 → 𝐴 ≠ 𝐷)) |
103 | 102 | com12 32 |
. . . . . . . . 9
⊢ ({𝐷, 𝐴} ∈ ran 𝐸 → (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → 𝐴 ≠ 𝐷)) |
104 | 103 | adantl 481 |
. . . . . . . 8
⊢ (({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸) → (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → 𝐴 ≠ 𝐷)) |
105 | 104 | adantl 481 |
. . . . . . 7
⊢ ((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) → (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → 𝐴 ≠ 𝐷)) |
106 | 105 | imp 444 |
. . . . . 6
⊢
(((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) ∧ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})))) → 𝐴 ≠ 𝐷) |
107 | 46, 98, 106 | 3jca 1235 |
. . . . 5
⊢
(((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) ∧ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})))) → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷)) |
108 | | usgraedgrn 25910 |
. . . . . . . . . . . 12
⊢ ((𝑉 USGrph 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → 𝐵 ≠ 𝐶) |
109 | 108 | ex 449 |
. . . . . . . . . . 11
⊢ (𝑉 USGrph 𝐸 → ({𝐵, 𝐶} ∈ ran 𝐸 → 𝐵 ≠ 𝐶)) |
110 | 109 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → ({𝐵, 𝐶} ∈ ran 𝐸 → 𝐵 ≠ 𝐶)) |
111 | 110 | com12 32 |
. . . . . . . . 9
⊢ ({𝐵, 𝐶} ∈ ran 𝐸 → (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → 𝐵 ≠ 𝐶)) |
112 | 111 | adantl 481 |
. . . . . . . 8
⊢ (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) → (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → 𝐵 ≠ 𝐶)) |
113 | 112 | adantr 480 |
. . . . . . 7
⊢ ((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) → (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → 𝐵 ≠ 𝐶)) |
114 | 113 | imp 444 |
. . . . . 6
⊢
(((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) ∧ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})))) → 𝐵 ≠ 𝐶) |
115 | | prcom 4211 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝐷, 𝐴} = {𝐴, 𝐷} |
116 | 115 | eqeq2i 2622 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐸‘(𝐹‘3)) = {𝐷, 𝐴} ↔ (𝐸‘(𝐹‘3)) = {𝐴, 𝐷}) |
117 | 116 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 = 𝐷 → ((𝐸‘(𝐹‘3)) = {𝐷, 𝐴} ↔ (𝐸‘(𝐹‘3)) = {𝐴, 𝐷})) |
118 | | preq2 4213 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐵 = 𝐷 → {𝐴, 𝐵} = {𝐴, 𝐷}) |
119 | 118 | eqeq2d 2620 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 = 𝐷 → ((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ↔ (𝐸‘(𝐹‘0)) = {𝐴, 𝐷})) |
120 | 117, 119 | anbi12d 743 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 = 𝐷 → (((𝐸‘(𝐹‘3)) = {𝐷, 𝐴} ∧ (𝐸‘(𝐹‘0)) = {𝐴, 𝐵}) ↔ ((𝐸‘(𝐹‘3)) = {𝐴, 𝐷} ∧ (𝐸‘(𝐹‘0)) = {𝐴, 𝐷}))) |
121 | 120 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 = 𝐷 ∧ (𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4))) → (((𝐸‘(𝐹‘3)) = {𝐷, 𝐴} ∧ (𝐸‘(𝐹‘0)) = {𝐴, 𝐵}) ↔ ((𝐸‘(𝐹‘3)) = {𝐴, 𝐷} ∧ (𝐸‘(𝐹‘0)) = {𝐴, 𝐷}))) |
122 | | eqtr3 2631 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐸‘(𝐹‘3)) = {𝐴, 𝐷} ∧ (𝐸‘(𝐹‘0)) = {𝐴, 𝐷}) → (𝐸‘(𝐹‘3)) = (𝐸‘(𝐹‘0))) |
123 | | elfzo0 12376 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (3 ∈
(0..^4) ↔ (3 ∈ ℕ0 ∧ 4 ∈ ℕ ∧ 3
< 4)) |
124 | 27, 59, 24, 123 | mpbir3an 1237 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 3 ∈
(0..^4) |
125 | | ffvelrn 6265 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐹:(0..^4)⟶dom 𝐸 ∧ 3 ∈ (0..^4)) →
(𝐹‘3) ∈ dom
𝐸) |
126 | 124, 125 | mpan2 703 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐹:(0..^4)⟶dom 𝐸 → (𝐹‘3) ∈ dom 𝐸) |
127 | 126, 63 | jca 553 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹:(0..^4)⟶dom 𝐸 → ((𝐹‘3) ∈ dom 𝐸 ∧ (𝐹‘0) ∈ dom 𝐸)) |
128 | 58, 127 | syl6bi 242 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((#‘𝐹) = 4
→ (𝐹:(0..^(#‘𝐹))⟶dom 𝐸 → ((𝐹‘3) ∈ dom 𝐸 ∧ (𝐹‘0) ∈ dom 𝐸))) |
129 | 56, 128 | mpan9 485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 ∈ Word dom 𝐸 ∧ (#‘𝐹) = 4) → ((𝐹‘3) ∈ dom 𝐸 ∧ (𝐹‘0) ∈ dom 𝐸)) |
130 | 129 | 3adant2 1073 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4) → ((𝐹‘3) ∈ dom 𝐸 ∧ (𝐹‘0) ∈ dom 𝐸)) |
131 | | f1veqaeq 6418 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ ((𝐹‘3) ∈ dom 𝐸 ∧ (𝐹‘0) ∈ dom 𝐸)) → ((𝐸‘(𝐹‘3)) = (𝐸‘(𝐹‘0)) → (𝐹‘3) = (𝐹‘0))) |
132 | 55, 130, 131 | syl2an 493 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) → ((𝐸‘(𝐹‘3)) = (𝐸‘(𝐹‘0)) → (𝐹‘3) = (𝐹‘0))) |
133 | | f1veqaeq 6418 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐹:(0..^4)–1-1→dom 𝐸 ∧ (3 ∈ (0..^4) ∧ 0 ∈
(0..^4))) → ((𝐹‘3) = (𝐹‘0) → 3 = 0)) |
134 | 124, 61, 133 | mpanr12 717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐹:(0..^4)–1-1→dom 𝐸 → ((𝐹‘3) = (𝐹‘0) → 3 = 0)) |
135 | | 3ne0 10992 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 3 ≠
0 |
136 | 135 | neii 2784 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ¬ 3
= 0 |
137 | 136 | pm2.21i 115 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (3 = 0
→ 𝐵 ≠ 𝐷) |
138 | 134, 137 | syl6 34 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹:(0..^4)–1-1→dom 𝐸 → ((𝐹‘3) = (𝐹‘0) → 𝐵 ≠ 𝐷)) |
139 | 76, 138 | syl6bi 242 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((#‘𝐹) = 4
→ (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐸 → ((𝐹‘3) = (𝐹‘0) → 𝐵 ≠ 𝐷))) |
140 | 139 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐸 → ((#‘𝐹) = 4 → ((𝐹‘3) = (𝐹‘0) → 𝐵 ≠ 𝐷))) |
141 | 74, 140 | sylbir 224 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹:(0..^(#‘𝐹))⟶dom 𝐸 ∧ Fun ◡𝐹) → ((#‘𝐹) = 4 → ((𝐹‘3) = (𝐹‘0) → 𝐵 ≠ 𝐷))) |
142 | 141 | ex 449 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:(0..^(#‘𝐹))⟶dom 𝐸 → (Fun ◡𝐹 → ((#‘𝐹) = 4 → ((𝐹‘3) = (𝐹‘0) → 𝐵 ≠ 𝐷)))) |
143 | 56, 142 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 ∈ Word dom 𝐸 → (Fun ◡𝐹 → ((#‘𝐹) = 4 → ((𝐹‘3) = (𝐹‘0) → 𝐵 ≠ 𝐷)))) |
144 | 143 | 3imp 1249 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4) → ((𝐹‘3) = (𝐹‘0) → 𝐵 ≠ 𝐷)) |
145 | 144 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) → ((𝐹‘3) = (𝐹‘0) → 𝐵 ≠ 𝐷)) |
146 | 132, 145 | syld 46 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) → ((𝐸‘(𝐹‘3)) = (𝐸‘(𝐹‘0)) → 𝐵 ≠ 𝐷)) |
147 | 122, 146 | syl5 33 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) → (((𝐸‘(𝐹‘3)) = {𝐴, 𝐷} ∧ (𝐸‘(𝐹‘0)) = {𝐴, 𝐷}) → 𝐵 ≠ 𝐷)) |
148 | 147 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 = 𝐷 ∧ (𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4))) → (((𝐸‘(𝐹‘3)) = {𝐴, 𝐷} ∧ (𝐸‘(𝐹‘0)) = {𝐴, 𝐷}) → 𝐵 ≠ 𝐷)) |
149 | 121, 148 | sylbid 229 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 = 𝐷 ∧ (𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4))) → (((𝐸‘(𝐹‘3)) = {𝐷, 𝐴} ∧ (𝐸‘(𝐹‘0)) = {𝐴, 𝐵}) → 𝐵 ≠ 𝐷)) |
150 | 149 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ (((𝐸‘(𝐹‘3)) = {𝐷, 𝐴} ∧ (𝐸‘(𝐹‘0)) = {𝐴, 𝐵}) → ((𝐵 = 𝐷 ∧ (𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4))) → 𝐵 ≠ 𝐷)) |
151 | 150 | ex 449 |
. . . . . . . . . . . . . 14
⊢ ((𝐸‘(𝐹‘3)) = {𝐷, 𝐴} → ((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} → ((𝐵 = 𝐷 ∧ (𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4))) → 𝐵 ≠ 𝐷))) |
152 | 151 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}) → ((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} → ((𝐵 = 𝐷 ∧ (𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4))) → 𝐵 ≠ 𝐷))) |
153 | 152 | com12 32 |
. . . . . . . . . . . 12
⊢ ((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} → (((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}) → ((𝐵 = 𝐷 ∧ (𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4))) → 𝐵 ≠ 𝐷))) |
154 | 153 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) → (((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}) → ((𝐵 = 𝐷 ∧ (𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4))) → 𝐵 ≠ 𝐷))) |
155 | 154 | imp 444 |
. . . . . . . . . 10
⊢ ((((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})) → ((𝐵 = 𝐷 ∧ (𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4))) → 𝐵 ≠ 𝐷)) |
156 | 155 | com12 32 |
. . . . . . . . 9
⊢ ((𝐵 = 𝐷 ∧ (𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4))) → ((((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})) → 𝐵 ≠ 𝐷)) |
157 | 156 | expimpd 627 |
. . . . . . . 8
⊢ (𝐵 = 𝐷 → (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → 𝐵 ≠ 𝐷)) |
158 | | ax-1 6 |
. . . . . . . 8
⊢ (𝐵 ≠ 𝐷 → (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → 𝐵 ≠ 𝐷)) |
159 | 157, 158 | pm2.61ine 2865 |
. . . . . . 7
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → 𝐵 ≠ 𝐷) |
160 | 159 | adantl 481 |
. . . . . 6
⊢
(((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) ∧ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})))) → 𝐵 ≠ 𝐷) |
161 | | usgraedgrn 25910 |
. . . . . . . . . . . 12
⊢ ((𝑉 USGrph 𝐸 ∧ {𝐶, 𝐷} ∈ ran 𝐸) → 𝐶 ≠ 𝐷) |
162 | 161 | ex 449 |
. . . . . . . . . . 11
⊢ (𝑉 USGrph 𝐸 → ({𝐶, 𝐷} ∈ ran 𝐸 → 𝐶 ≠ 𝐷)) |
163 | 162 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → ({𝐶, 𝐷} ∈ ran 𝐸 → 𝐶 ≠ 𝐷)) |
164 | 163 | com12 32 |
. . . . . . . . 9
⊢ ({𝐶, 𝐷} ∈ ran 𝐸 → (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → 𝐶 ≠ 𝐷)) |
165 | 164 | adantr 480 |
. . . . . . . 8
⊢ (({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸) → (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → 𝐶 ≠ 𝐷)) |
166 | 165 | adantl 481 |
. . . . . . 7
⊢ ((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) → (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → 𝐶 ≠ 𝐷)) |
167 | 166 | imp 444 |
. . . . . 6
⊢
(((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) ∧ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})))) → 𝐶 ≠ 𝐷) |
168 | 114, 160,
167 | 3jca 1235 |
. . . . 5
⊢
(((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) ∧ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})))) → (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷)) |
169 | 107, 168 | jca 553 |
. . . 4
⊢
(((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) ∧ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})))) → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷))) |
170 | 40, 169 | jca 553 |
. . 3
⊢
(((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) ∧ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})))) → ((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷)))) |
171 | 39, 170 | mpancom 700 |
. 2
⊢ (((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) ∧ (((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴}))) → ((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷)))) |
172 | 171 | ex 449 |
1
⊢ ((𝑉 USGrph 𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹 ∧ (#‘𝐹) = 4)) → ((((𝐸‘(𝐹‘0)) = {𝐴, 𝐵} ∧ (𝐸‘(𝐹‘1)) = {𝐵, 𝐶}) ∧ ((𝐸‘(𝐹‘2)) = {𝐶, 𝐷} ∧ (𝐸‘(𝐹‘3)) = {𝐷, 𝐴})) → ((({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐵, 𝐶} ∈ ran 𝐸) ∧ ({𝐶, 𝐷} ∈ ran 𝐸 ∧ {𝐷, 𝐴} ∈ ran 𝐸)) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷))))) |