Step | Hyp | Ref
| Expression |
1 | | cycliswlk 26160 |
. . . . 5
⊢ (𝐹(𝑉 Cycles 𝐸)𝑃 → 𝐹(𝑉 Walks 𝐸)𝑃) |
2 | | wlkbprop 26051 |
. . . . 5
⊢ (𝐹(𝑉 Walks 𝐸)𝑃 → ((#‘𝐹) ∈ ℕ0 ∧ (𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝐹(𝑉 Cycles 𝐸)𝑃 → ((#‘𝐹) ∈ ℕ0 ∧ (𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
4 | | iscycl 26153 |
. . . . . 6
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 Cycles 𝐸)𝑃 ↔ (𝐹(𝑉 Paths 𝐸)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))))) |
5 | | ispth 26098 |
. . . . . . . 8
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 Paths 𝐸)𝑃 ↔ (𝐹(𝑉 Trails 𝐸)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅))) |
6 | | istrl 26067 |
. . . . . . . . . 10
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 Trails 𝐸)𝑃 ↔ ((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
7 | | fzo0to42pr 12422 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0..^4) =
({0, 1} ∪ {2, 3}) |
8 | 7 | raleqi 3119 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑘 ∈
(0..^4)(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ ({0, 1} ∪ {2, 3})(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
9 | | ralunb 3756 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑘 ∈
({0, 1} ∪ {2, 3})(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∧ ∀𝑘 ∈ {2, 3} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
10 | | 2wlklem 26094 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑘 ∈
{0, 1} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
11 | | 2z 11286 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℤ |
12 | | 3z 11287 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 3 ∈
ℤ |
13 | | fveq2 6103 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 2 → (𝐹‘𝑘) = (𝐹‘2)) |
14 | 13 | fveq2d 6107 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 2 → (𝐸‘(𝐹‘𝑘)) = (𝐸‘(𝐹‘2))) |
15 | | fveq2 6103 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 2 → (𝑃‘𝑘) = (𝑃‘2)) |
16 | | oveq1 6556 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 2 → (𝑘 + 1) = (2 + 1)) |
17 | | 2p1e3 11028 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (2 + 1) =
3 |
18 | 16, 17 | syl6eq 2660 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 2 → (𝑘 + 1) = 3) |
19 | 18 | fveq2d 6107 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 2 → (𝑃‘(𝑘 + 1)) = (𝑃‘3)) |
20 | 15, 19 | preq12d 4220 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 2 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘2), (𝑃‘3)}) |
21 | 14, 20 | eqeq12d 2625 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 2 → ((𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)})) |
22 | | fveq2 6103 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 3 → (𝐹‘𝑘) = (𝐹‘3)) |
23 | 22 | fveq2d 6107 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 3 → (𝐸‘(𝐹‘𝑘)) = (𝐸‘(𝐹‘3))) |
24 | | fveq2 6103 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 3 → (𝑃‘𝑘) = (𝑃‘3)) |
25 | | oveq1 6556 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 3 → (𝑘 + 1) = (3 + 1)) |
26 | | 3p1e4 11030 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (3 + 1) =
4 |
27 | 25, 26 | syl6eq 2660 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 3 → (𝑘 + 1) = 4) |
28 | 27 | fveq2d 6107 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 3 → (𝑃‘(𝑘 + 1)) = (𝑃‘4)) |
29 | 24, 28 | preq12d 4220 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 3 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘3), (𝑃‘4)}) |
30 | 23, 29 | eqeq12d 2625 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 3 → ((𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘4)})) |
31 | 21, 30 | ralprg 4181 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((2
∈ ℤ ∧ 3 ∈ ℤ) → (∀𝑘 ∈ {2, 3} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘4)}))) |
32 | 11, 12, 31 | mp2an 704 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑘 ∈
{2, 3} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘4)})) |
33 | 10, 32 | anbi12i 729 |
. . . . . . . . . . . . . . . . . 18
⊢
((∀𝑘 ∈
{0, 1} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∧ ∀𝑘 ∈ {2, 3} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) ↔ (((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ∧ ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘4)}))) |
34 | 8, 9, 33 | 3bitri 285 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑘 ∈
(0..^4)(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ∧ ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘4)}))) |
35 | | preq2 4213 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑃‘4) = (𝑃‘0) → {(𝑃‘3), (𝑃‘4)} = {(𝑃‘3), (𝑃‘0)}) |
36 | 35 | eqcoms 2618 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑃‘0) = (𝑃‘4) → {(𝑃‘3), (𝑃‘4)} = {(𝑃‘3), (𝑃‘0)}) |
37 | 36 | eqeq2d 2620 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑃‘0) = (𝑃‘4) → ((𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘4)} ↔ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘0)})) |
38 | 37 | anbi2d 736 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑃‘0) = (𝑃‘4) → (((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘4)}) ↔ ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘0)}))) |
39 | 38 | anbi2d 736 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃‘0) = (𝑃‘4) → ((((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ∧ ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘4)})) ↔ (((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ∧ ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘0)})))) |
40 | | 4pos 10993 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 0 <
4 |
41 | | breq2 4587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((#‘𝐹) = 4
→ (0 < (#‘𝐹)
↔ 0 < 4)) |
42 | 40, 41 | mpbiri 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((#‘𝐹) = 4
→ 0 < (#‘𝐹)) |
43 | | 0nn0 11184 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 0 ∈
ℕ0 |
44 | 42, 43 | jctil 558 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((#‘𝐹) = 4
→ (0 ∈ ℕ0 ∧ 0 < (#‘𝐹))) |
45 | | nvnencycllem 26171 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (0 ∈ ℕ0 ∧
0 < (#‘𝐹))) →
((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → {(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸)) |
46 | 44, 45 | sylan2 490 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (#‘𝐹) = 4) → ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → {(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸)) |
47 | | 1lt4 11076 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 1 <
4 |
48 | | breq2 4587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((#‘𝐹) = 4
→ (1 < (#‘𝐹)
↔ 1 < 4)) |
49 | 47, 48 | mpbiri 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((#‘𝐹) = 4
→ 1 < (#‘𝐹)) |
50 | | 1nn0 11185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 1 ∈
ℕ0 |
51 | 49, 50 | jctil 558 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((#‘𝐹) = 4
→ (1 ∈ ℕ0 ∧ 1 < (#‘𝐹))) |
52 | | nvnencycllem 26171 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (1 ∈ ℕ0 ∧
1 < (#‘𝐹))) →
((𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸)) |
53 | 51, 52 | sylan2 490 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (#‘𝐹) = 4) → ((𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸)) |
54 | 46, 53 | anim12d 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (#‘𝐹) = 4) → (((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ({(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸))) |
55 | | 2lt4 11075 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 2 <
4 |
56 | | breq2 4587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((#‘𝐹) = 4
→ (2 < (#‘𝐹)
↔ 2 < 4)) |
57 | 55, 56 | mpbiri 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((#‘𝐹) = 4
→ 2 < (#‘𝐹)) |
58 | | 2nn0 11186 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 2 ∈
ℕ0 |
59 | 57, 58 | jctil 558 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((#‘𝐹) = 4
→ (2 ∈ ℕ0 ∧ 2 < (#‘𝐹))) |
60 | | nvnencycllem 26171 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (2 ∈ ℕ0 ∧
2 < (#‘𝐹))) →
((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} → {(𝑃‘2), (𝑃‘3)} ∈ ran 𝐸)) |
61 | 59, 60 | sylan2 490 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (#‘𝐹) = 4) → ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} → {(𝑃‘2), (𝑃‘3)} ∈ ran 𝐸)) |
62 | | 3lt4 11074 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 3 <
4 |
63 | | breq2 4587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((#‘𝐹) = 4
→ (3 < (#‘𝐹)
↔ 3 < 4)) |
64 | 62, 63 | mpbiri 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((#‘𝐹) = 4
→ 3 < (#‘𝐹)) |
65 | | 3nn0 11187 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 3 ∈
ℕ0 |
66 | 64, 65 | jctil 558 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((#‘𝐹) = 4
→ (3 ∈ ℕ0 ∧ 3 < (#‘𝐹))) |
67 | | nvnencycllem 26171 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (3 ∈ ℕ0 ∧
3 < (#‘𝐹))) →
((𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘0)} → {(𝑃‘3), (𝑃‘0)} ∈ ran 𝐸)) |
68 | 66, 67 | sylan2 490 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (#‘𝐹) = 4) → ((𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘0)} → {(𝑃‘3), (𝑃‘0)} ∈ ran 𝐸)) |
69 | 61, 68 | anim12d 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (#‘𝐹) = 4) → (((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘0)}) → ({(𝑃‘2), (𝑃‘3)} ∈ ran 𝐸 ∧ {(𝑃‘3), (𝑃‘0)} ∈ ran 𝐸))) |
70 | 54, 69 | anim12d 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((Fun
𝐸 ∧ 𝐹 ∈ Word dom 𝐸) ∧ (#‘𝐹) = 4) → ((((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ∧ ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘0)})) → (({(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸) ∧ ({(𝑃‘2), (𝑃‘3)} ∈ ran 𝐸 ∧ {(𝑃‘3), (𝑃‘0)} ∈ ran 𝐸)))) |
71 | 70 | adantlrr 753 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((Fun
𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹)) ∧ (#‘𝐹) = 4) → ((((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ∧ ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘0)})) → (({(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸) ∧ ({(𝑃‘2), (𝑃‘3)} ∈ ran 𝐸 ∧ {(𝑃‘3), (𝑃‘0)} ∈ ran 𝐸)))) |
72 | 71 | imp 444 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((Fun
𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹)) ∧ (#‘𝐹) = 4) ∧ (((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ∧ ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘0)}))) → (({(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸) ∧ ({(𝑃‘2), (𝑃‘3)} ∈ ran 𝐸 ∧ {(𝑃‘3), (𝑃‘0)} ∈ ran 𝐸))) |
73 | | 4z 11288 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 4 ∈
ℤ |
74 | | 3re 10971 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 3 ∈
ℝ |
75 | | 4re 10974 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 4 ∈
ℝ |
76 | 74, 75, 62 | ltleii 10039 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 3 ≤
4 |
77 | | eluz2 11569 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (4 ∈
(ℤ≥‘3) ↔ (3 ∈ ℤ ∧ 4 ∈
ℤ ∧ 3 ≤ 4)) |
78 | 12, 73, 76, 77 | mpbir3an 1237 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 4 ∈
(ℤ≥‘3) |
79 | | 4fvwrd4 12328 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((4
∈ (ℤ≥‘3) ∧ 𝑃:(0...4)⟶𝑉) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑))) |
80 | 78, 79 | mpan 702 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑃:(0...4)⟶𝑉 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑))) |
81 | | preq12 4214 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) → {(𝑃‘0), (𝑃‘1)} = {𝑎, 𝑏}) |
82 | 81 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → {(𝑃‘0), (𝑃‘1)} = {𝑎, 𝑏}) |
83 | 82 | eleq1d 2672 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → ({(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸 ↔ {𝑎, 𝑏} ∈ ran 𝐸)) |
84 | | simplr 788 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → (𝑃‘1) = 𝑏) |
85 | | simprl 790 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → (𝑃‘2) = 𝑐) |
86 | 84, 85 | preq12d 4220 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → {(𝑃‘1), (𝑃‘2)} = {𝑏, 𝑐}) |
87 | 86 | eleq1d 2672 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → ({(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸 ↔ {𝑏, 𝑐} ∈ ran 𝐸)) |
88 | 83, 87 | anbi12d 743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → (({(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸) ↔ ({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸))) |
89 | | preq12 4214 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑) → {(𝑃‘2), (𝑃‘3)} = {𝑐, 𝑑}) |
90 | 89 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → {(𝑃‘2), (𝑃‘3)} = {𝑐, 𝑑}) |
91 | 90 | eleq1d 2672 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → ({(𝑃‘2), (𝑃‘3)} ∈ ran 𝐸 ↔ {𝑐, 𝑑} ∈ ran 𝐸)) |
92 | | simprr 792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → (𝑃‘3) = 𝑑) |
93 | | simpll 786 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → (𝑃‘0) = 𝑎) |
94 | 92, 93 | preq12d 4220 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → {(𝑃‘3), (𝑃‘0)} = {𝑑, 𝑎}) |
95 | 94 | eleq1d 2672 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → ({(𝑃‘3), (𝑃‘0)} ∈ ran 𝐸 ↔ {𝑑, 𝑎} ∈ ran 𝐸)) |
96 | 91, 95 | anbi12d 743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → (({(𝑃‘2), (𝑃‘3)} ∈ ran 𝐸 ∧ {(𝑃‘3), (𝑃‘0)} ∈ ran 𝐸) ↔ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸))) |
97 | 88, 96 | anbi12d 743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → ((({(𝑃‘0), (𝑃‘1)} ∈ ran 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸) ∧ ({(𝑃‘2), (𝑃‘3)} ∈ ran 𝐸 ∧ {(𝑃‘3), (𝑃‘0)} ∈ ran 𝐸)) ↔ (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))) |
98 | 97 | biimpcd 238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((({(𝑃‘0),
(𝑃‘1)} ∈ ran
𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸) ∧ ({(𝑃‘2), (𝑃‘3)} ∈ ran 𝐸 ∧ {(𝑃‘3), (𝑃‘0)} ∈ ran 𝐸)) → ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))) |
99 | 98 | reximdv 2999 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((({(𝑃‘0),
(𝑃‘1)} ∈ ran
𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸) ∧ ({(𝑃‘2), (𝑃‘3)} ∈ ran 𝐸 ∧ {(𝑃‘3), (𝑃‘0)} ∈ ran 𝐸)) → (∃𝑑 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))) |
100 | 99 | reximdv 2999 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((({(𝑃‘0),
(𝑃‘1)} ∈ ran
𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸) ∧ ({(𝑃‘2), (𝑃‘3)} ∈ ran 𝐸 ∧ {(𝑃‘3), (𝑃‘0)} ∈ ran 𝐸)) → (∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))) |
101 | 100 | reximdv 2999 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((({(𝑃‘0),
(𝑃‘1)} ∈ ran
𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸) ∧ ({(𝑃‘2), (𝑃‘3)} ∈ ran 𝐸 ∧ {(𝑃‘3), (𝑃‘0)} ∈ ran 𝐸)) → (∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))) |
102 | 101 | reximdv 2999 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((({(𝑃‘0),
(𝑃‘1)} ∈ ran
𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ ran 𝐸) ∧ ({(𝑃‘2), (𝑃‘3)} ∈ ran 𝐸 ∧ {(𝑃‘3), (𝑃‘0)} ∈ ran 𝐸)) → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))) |
103 | 72, 80, 102 | syl2im 39 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((Fun
𝐸 ∧ (𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹)) ∧ (#‘𝐹) = 4) ∧ (((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ∧ ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘0)}))) → (𝑃:(0...4)⟶𝑉 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))) |
104 | 103 | exp41 636 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (Fun
𝐸 → ((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹) → ((#‘𝐹) = 4 → ((((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ∧ ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘0)})) → (𝑃:(0...4)⟶𝑉 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸))))))) |
105 | 104 | com14 94 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ∧ ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘0)})) → ((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹) → ((#‘𝐹) = 4 → (Fun 𝐸 → (𝑃:(0...4)⟶𝑉 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸))))))) |
106 | 105 | com35 96 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ∧ ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘0)})) → ((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹) → (𝑃:(0...4)⟶𝑉 → (Fun 𝐸 → ((#‘𝐹) = 4 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸))))))) |
107 | 39, 106 | syl6bi 242 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃‘0) = (𝑃‘4) → ((((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ∧ ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘4)})) → ((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹) → (𝑃:(0...4)⟶𝑉 → (Fun 𝐸 → ((#‘𝐹) = 4 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))))))) |
108 | 107 | com12 32 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ∧ ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘4)})) → ((𝑃‘0) = (𝑃‘4) → ((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹) → (𝑃:(0...4)⟶𝑉 → (Fun 𝐸 → ((#‘𝐹) = 4 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))))))) |
109 | 108 | com24 93 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) ∧ ((𝐸‘(𝐹‘2)) = {(𝑃‘2), (𝑃‘3)} ∧ (𝐸‘(𝐹‘3)) = {(𝑃‘3), (𝑃‘4)})) → (𝑃:(0...4)⟶𝑉 → ((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹) → ((𝑃‘0) = (𝑃‘4) → (Fun 𝐸 → ((#‘𝐹) = 4 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))))))) |
110 | 34, 109 | sylbi 206 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑘 ∈
(0..^4)(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...4)⟶𝑉 → ((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹) → ((𝑃‘0) = (𝑃‘4) → (Fun 𝐸 → ((#‘𝐹) = 4 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))))))) |
111 | 110 | com13 86 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹) → (𝑃:(0...4)⟶𝑉 → (∀𝑘 ∈ (0..^4)(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → ((𝑃‘0) = (𝑃‘4) → (Fun 𝐸 → ((#‘𝐹) = 4 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))))))) |
112 | 111 | 3imp 1249 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹) ∧ 𝑃:(0...4)⟶𝑉 ∧ ∀𝑘 ∈ (0..^4)(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → ((𝑃‘0) = (𝑃‘4) → (Fun 𝐸 → ((#‘𝐹) = 4 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))))) |
113 | 112 | com14 94 |
. . . . . . . . . . . . 13
⊢
((#‘𝐹) = 4
→ ((𝑃‘0) =
(𝑃‘4) → (Fun
𝐸 → (((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹) ∧ 𝑃:(0...4)⟶𝑉 ∧ ∀𝑘 ∈ (0..^4)(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))))) |
114 | | fveq2 6103 |
. . . . . . . . . . . . . 14
⊢
((#‘𝐹) = 4
→ (𝑃‘(#‘𝐹)) = (𝑃‘4)) |
115 | 114 | eqeq2d 2620 |
. . . . . . . . . . . . 13
⊢
((#‘𝐹) = 4
→ ((𝑃‘0) =
(𝑃‘(#‘𝐹)) ↔ (𝑃‘0) = (𝑃‘4))) |
116 | | oveq2 6557 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘𝐹) = 4
→ (0...(#‘𝐹)) =
(0...4)) |
117 | 116 | feq2d 5944 |
. . . . . . . . . . . . . . . 16
⊢
((#‘𝐹) = 4
→ (𝑃:(0...(#‘𝐹))⟶𝑉 ↔ 𝑃:(0...4)⟶𝑉)) |
118 | | oveq2 6557 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘𝐹) = 4
→ (0..^(#‘𝐹)) =
(0..^4)) |
119 | 118 | raleqdv 3121 |
. . . . . . . . . . . . . . . 16
⊢
((#‘𝐹) = 4
→ (∀𝑘 ∈
(0..^(#‘𝐹))(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ (0..^4)(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
120 | 117, 119 | 3anbi23d 1394 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝐹) = 4
→ (((𝐹 ∈ Word dom
𝐸 ∧ Fun ◡𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) ↔ ((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹) ∧ 𝑃:(0...4)⟶𝑉 ∧ ∀𝑘 ∈ (0..^4)(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
121 | 120 | imbi1d 330 |
. . . . . . . . . . . . . 14
⊢
((#‘𝐹) = 4
→ ((((𝐹 ∈ Word
dom 𝐸 ∧ Fun ◡𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸))) ↔ (((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹) ∧ 𝑃:(0...4)⟶𝑉 ∧ ∀𝑘 ∈ (0..^4)(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸))))) |
122 | 121 | imbi2d 329 |
. . . . . . . . . . . . 13
⊢
((#‘𝐹) = 4
→ ((Fun 𝐸 →
(((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))) ↔ (Fun 𝐸 → (((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹) ∧ 𝑃:(0...4)⟶𝑉 ∧ ∀𝑘 ∈ (0..^4)(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))))) |
123 | 113, 115,
122 | 3imtr4d 282 |
. . . . . . . . . . . 12
⊢
((#‘𝐹) = 4
→ ((𝑃‘0) =
(𝑃‘(#‘𝐹)) → (Fun 𝐸 → (((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))))) |
124 | 123 | com14 94 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (Fun 𝐸 → ((#‘𝐹) = 4 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))))) |
125 | 124 | 2a1d 26 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ Word dom 𝐸 ∧ Fun ◡𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) → (Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (Fun 𝐸 → ((#‘𝐹) = 4 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))))))) |
126 | 6, 125 | syl6bi 242 |
. . . . . . . . 9
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 Trails 𝐸)𝑃 → (Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (Fun 𝐸 → ((#‘𝐹) = 4 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸))))))))) |
127 | 126 | 3impd 1273 |
. . . . . . . 8
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝐹(𝑉 Trails 𝐸)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (Fun 𝐸 → ((#‘𝐹) = 4 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸))))))) |
128 | 5, 127 | sylbid 229 |
. . . . . . 7
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 Paths 𝐸)𝑃 → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (Fun 𝐸 → ((#‘𝐹) = 4 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸))))))) |
129 | 128 | impd 446 |
. . . . . 6
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝐹(𝑉 Paths 𝐸)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → (Fun 𝐸 → ((#‘𝐹) = 4 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))))) |
130 | 4, 129 | sylbid 229 |
. . . . 5
⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 Cycles 𝐸)𝑃 → (Fun 𝐸 → ((#‘𝐹) = 4 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))))) |
131 | 130 | 3adant1 1072 |
. . . 4
⊢
(((#‘𝐹) ∈
ℕ0 ∧ (𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝑉 Cycles 𝐸)𝑃 → (Fun 𝐸 → ((#‘𝐹) = 4 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸)))))) |
132 | 3, 131 | mpcom 37 |
. . 3
⊢ (𝐹(𝑉 Cycles 𝐸)𝑃 → (Fun 𝐸 → ((#‘𝐹) = 4 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸))))) |
133 | 132 | com12 32 |
. 2
⊢ (Fun
𝐸 → (𝐹(𝑉 Cycles 𝐸)𝑃 → ((#‘𝐹) = 4 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸))))) |
134 | 133 | 3imp 1249 |
1
⊢ ((Fun
𝐸 ∧ 𝐹(𝑉 Cycles 𝐸)𝑃 ∧ (#‘𝐹) = 4) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (({𝑎, 𝑏} ∈ ran 𝐸 ∧ {𝑏, 𝑐} ∈ ran 𝐸) ∧ ({𝑐, 𝑑} ∈ ran 𝐸 ∧ {𝑑, 𝑎} ∈ ran 𝐸))) |