MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4cycl4dv Structured version   Unicode version

Theorem 4cycl4dv 24794
Description: In a simple graph, the vertices of a 4-cycle are mutually different. (Contributed by Alexander van der Vekens, 18-Nov-2017.)
Assertion
Ref Expression
4cycl4dv  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( A  =/=  B  /\  A  =/=  C  /\  A  =/= 
D )  /\  ( B  =/=  C  /\  B  =/=  D  /\  C  =/= 
D ) ) ) ) )

Proof of Theorem 4cycl4dv
StepHypRef Expression
1 usgrafun 24476 . . . . 5  |-  ( V USGrph  E  ->  Fun  E )
2 4pos 10652 . . . . . . . . . . . . . . 15  |-  0  <  4
3 breq2 4460 . . . . . . . . . . . . . . 15  |-  ( (
# `  F )  =  4  ->  (
0  <  ( # `  F
)  <->  0  <  4
) )
42, 3mpbiri 233 . . . . . . . . . . . . . 14  |-  ( (
# `  F )  =  4  ->  0  <  ( # `  F
) )
5 0nn0 10831 . . . . . . . . . . . . . 14  |-  0  e.  NN0
64, 5jctil 537 . . . . . . . . . . . . 13  |-  ( (
# `  F )  =  4  ->  (
0  e.  NN0  /\  0  <  ( # `  F
) ) )
7 nvnencycllem 24770 . . . . . . . . . . . . 13  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( 0  e. 
NN0  /\  0  <  (
# `  F )
) )  ->  (
( E `  ( F `  0 )
)  =  { A ,  B }  ->  { A ,  B }  e.  ran  E ) )
86, 7sylan2 474 . . . . . . . . . . . 12  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( # `  F
)  =  4 )  ->  ( ( E `
 ( F ` 
0 ) )  =  { A ,  B }  ->  { A ,  B }  e.  ran  E ) )
9 1lt4 10728 . . . . . . . . . . . . . . 15  |-  1  <  4
10 breq2 4460 . . . . . . . . . . . . . . 15  |-  ( (
# `  F )  =  4  ->  (
1  <  ( # `  F
)  <->  1  <  4
) )
119, 10mpbiri 233 . . . . . . . . . . . . . 14  |-  ( (
# `  F )  =  4  ->  1  <  ( # `  F
) )
12 1nn0 10832 . . . . . . . . . . . . . 14  |-  1  e.  NN0
1311, 12jctil 537 . . . . . . . . . . . . 13  |-  ( (
# `  F )  =  4  ->  (
1  e.  NN0  /\  1  <  ( # `  F
) ) )
14 nvnencycllem 24770 . . . . . . . . . . . . 13  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( 1  e. 
NN0  /\  1  <  (
# `  F )
) )  ->  (
( E `  ( F `  1 )
)  =  { B ,  C }  ->  { B ,  C }  e.  ran  E ) )
1513, 14sylan2 474 . . . . . . . . . . . 12  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( # `  F
)  =  4 )  ->  ( ( E `
 ( F ` 
1 ) )  =  { B ,  C }  ->  { B ,  C }  e.  ran  E ) )
168, 15anim12d 563 . . . . . . . . . . 11  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( # `  F
)  =  4 )  ->  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  ->  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E ) ) )
17 2lt4 10727 . . . . . . . . . . . . . . 15  |-  2  <  4
18 breq2 4460 . . . . . . . . . . . . . . 15  |-  ( (
# `  F )  =  4  ->  (
2  <  ( # `  F
)  <->  2  <  4
) )
1917, 18mpbiri 233 . . . . . . . . . . . . . 14  |-  ( (
# `  F )  =  4  ->  2  <  ( # `  F
) )
20 2nn0 10833 . . . . . . . . . . . . . 14  |-  2  e.  NN0
2119, 20jctil 537 . . . . . . . . . . . . 13  |-  ( (
# `  F )  =  4  ->  (
2  e.  NN0  /\  2  <  ( # `  F
) ) )
22 nvnencycllem 24770 . . . . . . . . . . . . 13  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( 2  e. 
NN0  /\  2  <  (
# `  F )
) )  ->  (
( E `  ( F `  2 )
)  =  { C ,  D }  ->  { C ,  D }  e.  ran  E ) )
2321, 22sylan2 474 . . . . . . . . . . . 12  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( # `  F
)  =  4 )  ->  ( ( E `
 ( F ` 
2 ) )  =  { C ,  D }  ->  { C ,  D }  e.  ran  E ) )
24 3lt4 10726 . . . . . . . . . . . . . . 15  |-  3  <  4
25 breq2 4460 . . . . . . . . . . . . . . 15  |-  ( (
# `  F )  =  4  ->  (
3  <  ( # `  F
)  <->  3  <  4
) )
2624, 25mpbiri 233 . . . . . . . . . . . . . 14  |-  ( (
# `  F )  =  4  ->  3  <  ( # `  F
) )
27 3nn0 10834 . . . . . . . . . . . . . 14  |-  3  e.  NN0
2826, 27jctil 537 . . . . . . . . . . . . 13  |-  ( (
# `  F )  =  4  ->  (
3  e.  NN0  /\  3  <  ( # `  F
) ) )
29 nvnencycllem 24770 . . . . . . . . . . . . 13  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( 3  e. 
NN0  /\  3  <  (
# `  F )
) )  ->  (
( E `  ( F `  3 )
)  =  { D ,  A }  ->  { D ,  A }  e.  ran  E ) )
3028, 29sylan2 474 . . . . . . . . . . . 12  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( # `  F
)  =  4 )  ->  ( ( E `
 ( F ` 
3 ) )  =  { D ,  A }  ->  { D ,  A }  e.  ran  E ) )
3123, 30anim12d 563 . . . . . . . . . . 11  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( # `  F
)  =  4 )  ->  ( ( ( E `  ( F `
 2 ) )  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } )  ->  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) )
3216, 31anim12d 563 . . . . . . . . . 10  |-  ( ( ( Fun  E  /\  F  e. Word  dom  E )  /\  ( # `  F
)  =  4 )  ->  ( ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) ) )
3332ex 434 . . . . . . . . 9  |-  ( ( Fun  E  /\  F  e. Word  dom  E )  -> 
( ( # `  F
)  =  4  -> 
( ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) ) ) )
3433expcom 435 . . . . . . . 8  |-  ( F  e. Word  dom  E  ->  ( Fun  E  ->  (
( # `  F )  =  4  ->  (
( ( ( E `
 ( F ` 
0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  ( ( E `  ( F `  2 ) )  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) ) ) ) )
3534com23 78 . . . . . . 7  |-  ( F  e. Word  dom  E  ->  ( ( # `  F
)  =  4  -> 
( Fun  E  ->  ( ( ( ( E `
 ( F ` 
0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  ( ( E `  ( F `  2 ) )  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) ) ) ) )
3635imp 429 . . . . . 6  |-  ( ( F  e. Word  dom  E  /\  ( # `  F
)  =  4 )  ->  ( Fun  E  ->  ( ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) ) ) )
37363adant2 1015 . . . . 5  |-  ( ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 )  -> 
( Fun  E  ->  ( ( ( ( E `
 ( F ` 
0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  ( ( E `  ( F `  2 ) )  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) ) ) )
381, 37mpan9 469 . . . 4  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) ) )
3938imp 429 . . 3  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 ) )  /\  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) )
40 simpl 457 . . . 4  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) ) )
41 usgraedgrn 24508 . . . . . . . . . . 11  |-  ( ( V USGrph  E  /\  { A ,  B }  e.  ran  E )  ->  A  =/=  B )
4241ex 434 . . . . . . . . . 10  |-  ( V USGrph  E  ->  ( { A ,  B }  e.  ran  E  ->  A  =/=  B
) )
4342ad2antrr 725 . . . . . . . . 9  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 ) )  /\  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  ( { A ,  B }  e.  ran  E  ->  A  =/=  B
) )
4443com12 31 . . . . . . . 8  |-  ( { A ,  B }  e.  ran  E  ->  (
( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  A  =/=  B
) )
4544ad2antrr 725 . . . . . . 7  |-  ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  ->  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  /\  ( ( ( E `
 ( F ` 
0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  ( ( E `  ( F `  2 ) )  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  A  =/=  B
) )
4645imp 429 . . . . . 6  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  A  =/=  B )
47 preq1 4111 . . . . . . . . . . . . . 14  |-  ( A  =  C  ->  { A ,  B }  =  { C ,  B }
)
4847eqeq2d 2471 . . . . . . . . . . . . 13  |-  ( A  =  C  ->  (
( E `  ( F `  0 )
)  =  { A ,  B }  <->  ( E `  ( F `  0
) )  =  { C ,  B }
) )
49 prcom 4110 . . . . . . . . . . . . . . 15  |-  { B ,  C }  =  { C ,  B }
5049eqeq2i 2475 . . . . . . . . . . . . . 14  |-  ( ( E `  ( F `
 1 ) )  =  { B ,  C }  <->  ( E `  ( F `  1 ) )  =  { C ,  B } )
5150a1i 11 . . . . . . . . . . . . 13  |-  ( A  =  C  ->  (
( E `  ( F `  1 )
)  =  { B ,  C }  <->  ( E `  ( F `  1
) )  =  { C ,  B }
) )
5248, 51anbi12d 710 . . . . . . . . . . . 12  |-  ( A  =  C  ->  (
( ( E `  ( F `  0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  <->  ( ( E `  ( F `  0 ) )  =  { C ,  B }  /\  ( E `  ( F `  1 ) )  =  { C ,  B } ) ) )
5352adantr 465 . . . . . . . . . . 11  |-  ( ( A  =  C  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) ) )  ->  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  <->  ( ( E `  ( F `  0 ) )  =  { C ,  B }  /\  ( E `  ( F `  1 ) )  =  { C ,  B } ) ) )
54 eqtr3 2485 . . . . . . . . . . . . 13  |-  ( ( ( E `  ( F `  0 )
)  =  { C ,  B }  /\  ( E `  ( F `  1 ) )  =  { C ,  B } )  ->  ( E `  ( F `  0 ) )  =  ( E `  ( F `  1 ) ) )
55 usgraf1 24487 . . . . . . . . . . . . . . 15  |-  ( V USGrph  E  ->  E : dom  E
-1-1-> ran  E )
56 wrdf 12558 . . . . . . . . . . . . . . . . 17  |-  ( F  e. Word  dom  E  ->  F : ( 0..^ (
# `  F )
) --> dom  E )
57 oveq2 6304 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  F )  =  4  ->  (
0..^ ( # `  F
) )  =  ( 0..^ 4 ) )
5857feq2d 5724 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  F )  =  4  ->  ( F : ( 0..^ (
# `  F )
) --> dom  E  <->  F :
( 0..^ 4 ) --> dom  E ) )
59 4nn 10716 . . . . . . . . . . . . . . . . . . . . 21  |-  4  e.  NN
60 lbfzo0 11861 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 0  e.  ( 0..^ 4 )  <->  4  e.  NN )
6159, 60mpbir 209 . . . . . . . . . . . . . . . . . . . 20  |-  0  e.  ( 0..^ 4 )
62 ffvelrn 6030 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : ( 0..^ 4 ) --> dom  E  /\  0  e.  (
0..^ 4 ) )  ->  ( F ` 
0 )  e.  dom  E )
6361, 62mpan2 671 . . . . . . . . . . . . . . . . . . 19  |-  ( F : ( 0..^ 4 ) --> dom  E  ->  ( F `  0 )  e.  dom  E )
64 elfzo0 11862 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1  e.  ( 0..^ 4 )  <->  ( 1  e. 
NN0  /\  4  e.  NN  /\  1  <  4
) )
6512, 59, 9, 64mpbir3an 1178 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  ( 0..^ 4 )
66 ffvelrn 6030 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : ( 0..^ 4 ) --> dom  E  /\  1  e.  (
0..^ 4 ) )  ->  ( F ` 
1 )  e.  dom  E )
6765, 66mpan2 671 . . . . . . . . . . . . . . . . . . 19  |-  ( F : ( 0..^ 4 ) --> dom  E  ->  ( F `  1 )  e.  dom  E )
6863, 67jca 532 . . . . . . . . . . . . . . . . . 18  |-  ( F : ( 0..^ 4 ) --> dom  E  ->  ( ( F `  0
)  e.  dom  E  /\  ( F `  1
)  e.  dom  E
) )
6958, 68syl6bi 228 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  F )  =  4  ->  ( F : ( 0..^ (
# `  F )
) --> dom  E  ->  ( ( F `  0
)  e.  dom  E  /\  ( F `  1
)  e.  dom  E
) ) )
7056, 69mpan9 469 . . . . . . . . . . . . . . . 16  |-  ( ( F  e. Word  dom  E  /\  ( # `  F
)  =  4 )  ->  ( ( F `
 0 )  e. 
dom  E  /\  ( F `  1 )  e.  dom  E ) )
71703adant2 1015 . . . . . . . . . . . . . . 15  |-  ( ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 )  -> 
( ( F ` 
0 )  e.  dom  E  /\  ( F ` 
1 )  e.  dom  E ) )
72 f1veqaeq 6169 . . . . . . . . . . . . . . 15  |-  ( ( E : dom  E -1-1-> ran 
E  /\  ( ( F `  0 )  e.  dom  E  /\  ( F `  1 )  e.  dom  E ) )  ->  ( ( E `
 ( F ` 
0 ) )  =  ( E `  ( F `  1 )
)  ->  ( F `  0 )  =  ( F `  1
) ) )
7355, 71, 72syl2an 477 . . . . . . . . . . . . . 14  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( E `  ( F `  0 ) )  =  ( E `
 ( F ` 
1 ) )  -> 
( F `  0
)  =  ( F `
 1 ) ) )
74 df-f1 5599 . . . . . . . . . . . . . . . . . . 19  |-  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  <->  ( F : ( 0..^ (
# `  F )
) --> dom  E  /\  Fun  `' F ) )
75 f1eq2 5783 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 0..^ ( # `  F
) )  =  ( 0..^ 4 )  -> 
( F : ( 0..^ ( # `  F
) ) -1-1-> dom  E  <->  F : ( 0..^ 4 ) -1-1-> dom  E ) )
7657, 75syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  F )  =  4  ->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  <->  F :
( 0..^ 4 )
-1-1-> dom  E ) )
77 f1veqaeq 6169 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F : ( 0..^ 4 ) -1-1-> dom  E  /\  ( 0  e.  ( 0..^ 4 )  /\  1  e.  ( 0..^ 4 ) ) )  ->  ( ( F `
 0 )  =  ( F `  1
)  ->  0  = 
1 ) )
7861, 65, 77mpanr12 685 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( F : ( 0..^ 4 ) -1-1-> dom  E  ->  (
( F `  0
)  =  ( F `
 1 )  -> 
0  =  1 ) )
79 ax-1ne0 9578 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  =/=  0
8079nesymi 2730 . . . . . . . . . . . . . . . . . . . . . . 23  |-  -.  0  =  1
8180pm2.21i 131 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 0  =  1  ->  A  =/=  C )
8278, 81syl6 33 . . . . . . . . . . . . . . . . . . . . 21  |-  ( F : ( 0..^ 4 ) -1-1-> dom  E  ->  (
( F `  0
)  =  ( F `
 1 )  ->  A  =/=  C ) )
8376, 82syl6bi 228 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  F )  =  4  ->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  ->  (
( F `  0
)  =  ( F `
 1 )  ->  A  =/=  C ) ) )
8483com12 31 . . . . . . . . . . . . . . . . . . 19  |-  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  ->  (
( # `  F )  =  4  ->  (
( F `  0
)  =  ( F `
 1 )  ->  A  =/=  C ) ) )
8574, 84sylbir 213 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : ( 0..^ ( # `  F
) ) --> dom  E  /\  Fun  `' F )  ->  ( ( # `  F )  =  4  ->  ( ( F `
 0 )  =  ( F `  1
)  ->  A  =/=  C ) ) )
8685ex 434 . . . . . . . . . . . . . . . . 17  |-  ( F : ( 0..^ (
# `  F )
) --> dom  E  ->  ( Fun  `' F  -> 
( ( # `  F
)  =  4  -> 
( ( F ` 
0 )  =  ( F `  1 )  ->  A  =/=  C
) ) ) )
8756, 86syl 16 . . . . . . . . . . . . . . . 16  |-  ( F  e. Word  dom  E  ->  ( Fun  `' F  -> 
( ( # `  F
)  =  4  -> 
( ( F ` 
0 )  =  ( F `  1 )  ->  A  =/=  C
) ) ) )
88873imp 1190 . . . . . . . . . . . . . . 15  |-  ( ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 )  -> 
( ( F ` 
0 )  =  ( F `  1 )  ->  A  =/=  C
) )
8988adantl 466 . . . . . . . . . . . . . 14  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( F ` 
0 )  =  ( F `  1 )  ->  A  =/=  C
) )
9073, 89syld 44 . . . . . . . . . . . . 13  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( E `  ( F `  0 ) )  =  ( E `
 ( F ` 
1 ) )  ->  A  =/=  C ) )
9154, 90syl5 32 . . . . . . . . . . . 12  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( ( E `
 ( F ` 
0 ) )  =  { C ,  B }  /\  ( E `  ( F `  1 ) )  =  { C ,  B } )  ->  A  =/=  C ) )
9291adantl 466 . . . . . . . . . . 11  |-  ( ( A  =  C  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) ) )  ->  ( ( ( E `  ( F `
 0 ) )  =  { C ,  B }  /\  ( E `  ( F `  1 ) )  =  { C ,  B } )  ->  A  =/=  C ) )
9353, 92sylbid 215 . . . . . . . . . 10  |-  ( ( A  =  C  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) ) )  ->  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  ->  A  =/=  C ) )
9493adantrd 468 . . . . . . . . 9  |-  ( ( A  =  C  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) ) )  ->  ( ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  ->  A  =/=  C ) )
9594expimpd 603 . . . . . . . 8  |-  ( A  =  C  ->  (
( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  A  =/=  C
) )
96 ax-1 6 . . . . . . . 8  |-  ( A  =/=  C  ->  (
( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  A  =/=  C
) )
9795, 96pm2.61ine 2770 . . . . . . 7  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 ) )  /\  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  A  =/=  C
)
9897adantl 466 . . . . . 6  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  A  =/=  C )
99 usgraedgrn 24508 . . . . . . . . . . . . 13  |-  ( ( V USGrph  E  /\  { D ,  A }  e.  ran  E )  ->  D  =/=  A )
10099necomd 2728 . . . . . . . . . . . 12  |-  ( ( V USGrph  E  /\  { D ,  A }  e.  ran  E )  ->  A  =/=  D )
101100ex 434 . . . . . . . . . . 11  |-  ( V USGrph  E  ->  ( { D ,  A }  e.  ran  E  ->  A  =/=  D
) )
102101ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 ) )  /\  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  ( { D ,  A }  e.  ran  E  ->  A  =/=  D
) )
103102com12 31 . . . . . . . . 9  |-  ( { D ,  A }  e.  ran  E  ->  (
( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  A  =/=  D
) )
104103adantl 466 . . . . . . . 8  |-  ( ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E )  -> 
( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  A  =/=  D
) )
105104adantl 466 . . . . . . 7  |-  ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  ->  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  /\  ( ( ( E `
 ( F ` 
0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  ( ( E `  ( F `  2 ) )  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  A  =/=  D
) )
106105imp 429 . . . . . 6  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  A  =/=  D )
10746, 98, 1063jca 1176 . . . . 5  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  ( A  =/=  B  /\  A  =/= 
C  /\  A  =/=  D ) )
108 usgraedgrn 24508 . . . . . . . . . . . 12  |-  ( ( V USGrph  E  /\  { B ,  C }  e.  ran  E )  ->  B  =/=  C )
109108ex 434 . . . . . . . . . . 11  |-  ( V USGrph  E  ->  ( { B ,  C }  e.  ran  E  ->  B  =/=  C
) )
110109ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 ) )  /\  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  ( { B ,  C }  e.  ran  E  ->  B  =/=  C
) )
111110com12 31 . . . . . . . . 9  |-  ( { B ,  C }  e.  ran  E  ->  (
( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  B  =/=  C
) )
112111adantl 466 . . . . . . . 8  |-  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  -> 
( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  B  =/=  C
) )
113112adantr 465 . . . . . . 7  |-  ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  ->  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  /\  ( ( ( E `
 ( F ` 
0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  ( ( E `  ( F `  2 ) )  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  B  =/=  C
) )
114113imp 429 . . . . . 6  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  B  =/=  C )
115 prcom 4110 . . . . . . . . . . . . . . . . . . . . 21  |-  { D ,  A }  =  { A ,  D }
116115eqeq2i 2475 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( E `  ( F `
 3 ) )  =  { D ,  A }  <->  ( E `  ( F `  3 ) )  =  { A ,  D } )
117116a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( B  =  D  ->  (
( E `  ( F `  3 )
)  =  { D ,  A }  <->  ( E `  ( F `  3
) )  =  { A ,  D }
) )
118 preq2 4112 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  =  D  ->  { A ,  B }  =  { A ,  D }
)
119118eqeq2d 2471 . . . . . . . . . . . . . . . . . . 19  |-  ( B  =  D  ->  (
( E `  ( F `  0 )
)  =  { A ,  B }  <->  ( E `  ( F `  0
) )  =  { A ,  D }
) )
120117, 119anbi12d 710 . . . . . . . . . . . . . . . . . 18  |-  ( B  =  D  ->  (
( ( E `  ( F `  3 ) )  =  { D ,  A }  /\  ( E `  ( F `  0 ) )  =  { A ,  B } )  <->  ( ( E `  ( F `  3 ) )  =  { A ,  D }  /\  ( E `  ( F `  0 ) )  =  { A ,  D } ) ) )
121120adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) ) )  ->  ( ( ( E `  ( F `
 3 ) )  =  { D ,  A }  /\  ( E `  ( F `  0 ) )  =  { A ,  B } )  <->  ( ( E `  ( F `  3 ) )  =  { A ,  D }  /\  ( E `  ( F `  0 ) )  =  { A ,  D } ) ) )
122 eqtr3 2485 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( E `  ( F `  3 )
)  =  { A ,  D }  /\  ( E `  ( F `  0 ) )  =  { A ,  D } )  ->  ( E `  ( F `  3 ) )  =  ( E `  ( F `  0 ) ) )
123 elfzo0 11862 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( 3  e.  ( 0..^ 4 )  <->  ( 3  e. 
NN0  /\  4  e.  NN  /\  3  <  4
) )
12427, 59, 24, 123mpbir3an 1178 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  3  e.  ( 0..^ 4 )
125 ffvelrn 6030 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( F : ( 0..^ 4 ) --> dom  E  /\  3  e.  (
0..^ 4 ) )  ->  ( F ` 
3 )  e.  dom  E )
126124, 125mpan2 671 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( F : ( 0..^ 4 ) --> dom  E  ->  ( F `  3 )  e.  dom  E )
127126, 63jca 532 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( F : ( 0..^ 4 ) --> dom  E  ->  ( ( F `  3
)  e.  dom  E  /\  ( F `  0
)  e.  dom  E
) )
12858, 127syl6bi 228 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
# `  F )  =  4  ->  ( F : ( 0..^ (
# `  F )
) --> dom  E  ->  ( ( F `  3
)  e.  dom  E  /\  ( F `  0
)  e.  dom  E
) ) )
12956, 128mpan9 469 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F  e. Word  dom  E  /\  ( # `  F
)  =  4 )  ->  ( ( F `
 3 )  e. 
dom  E  /\  ( F `  0 )  e.  dom  E ) )
1301293adant2 1015 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 )  -> 
( ( F ` 
3 )  e.  dom  E  /\  ( F ` 
0 )  e.  dom  E ) )
131 f1veqaeq 6169 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( E : dom  E -1-1-> ran 
E  /\  ( ( F `  3 )  e.  dom  E  /\  ( F `  0 )  e.  dom  E ) )  ->  ( ( E `
 ( F ` 
3 ) )  =  ( E `  ( F `  0 )
)  ->  ( F `  3 )  =  ( F `  0
) ) )
13255, 130, 131syl2an 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( E `  ( F `  3 ) )  =  ( E `
 ( F ` 
0 ) )  -> 
( F `  3
)  =  ( F `
 0 ) ) )
133 f1veqaeq 6169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F : ( 0..^ 4 ) -1-1-> dom  E  /\  ( 3  e.  ( 0..^ 4 )  /\  0  e.  ( 0..^ 4 ) ) )  ->  ( ( F `
 3 )  =  ( F `  0
)  ->  3  = 
0 ) )
134124, 61, 133mpanr12 685 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( F : ( 0..^ 4 ) -1-1-> dom  E  ->  (
( F `  3
)  =  ( F `
 0 )  -> 
3  =  0 ) )
135 3ne0 10651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  3  =/=  0
136135neii 2656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  -.  3  =  0
137136pm2.21i 131 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( 3  =  0  ->  B  =/=  D )
138134, 137syl6 33 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( F : ( 0..^ 4 ) -1-1-> dom  E  ->  (
( F `  3
)  =  ( F `
 0 )  ->  B  =/=  D ) )
13976, 138syl6bi 228 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
# `  F )  =  4  ->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  ->  (
( F `  3
)  =  ( F `
 0 )  ->  B  =/=  D ) ) )
140139com12 31 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  ->  (
( # `  F )  =  4  ->  (
( F `  3
)  =  ( F `
 0 )  ->  B  =/=  D ) ) )
14174, 140sylbir 213 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F : ( 0..^ ( # `  F
) ) --> dom  E  /\  Fun  `' F )  ->  ( ( # `  F )  =  4  ->  ( ( F `
 3 )  =  ( F `  0
)  ->  B  =/=  D ) ) )
142141ex 434 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( F : ( 0..^ (
# `  F )
) --> dom  E  ->  ( Fun  `' F  -> 
( ( # `  F
)  =  4  -> 
( ( F ` 
3 )  =  ( F `  0 )  ->  B  =/=  D
) ) ) )
14356, 142syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( F  e. Word  dom  E  ->  ( Fun  `' F  -> 
( ( # `  F
)  =  4  -> 
( ( F ` 
3 )  =  ( F `  0 )  ->  B  =/=  D
) ) ) )
1441433imp 1190 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 )  -> 
( ( F ` 
3 )  =  ( F `  0 )  ->  B  =/=  D
) )
145144adantl 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( F ` 
3 )  =  ( F `  0 )  ->  B  =/=  D
) )
146132, 145syld 44 . . . . . . . . . . . . . . . . . . 19  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( E `  ( F `  3 ) )  =  ( E `
 ( F ` 
0 ) )  ->  B  =/=  D ) )
147122, 146syl5 32 . . . . . . . . . . . . . . . . . 18  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( ( E `
 ( F ` 
3 ) )  =  { A ,  D }  /\  ( E `  ( F `  0 ) )  =  { A ,  D } )  ->  B  =/=  D ) )
148147adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) ) )  ->  ( ( ( E `  ( F `
 3 ) )  =  { A ,  D }  /\  ( E `  ( F `  0 ) )  =  { A ,  D } )  ->  B  =/=  D ) )
149121, 148sylbid 215 . . . . . . . . . . . . . . . 16  |-  ( ( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) ) )  ->  ( ( ( E `  ( F `
 3 ) )  =  { D ,  A }  /\  ( E `  ( F `  0 ) )  =  { A ,  B } )  ->  B  =/=  D ) )
150149com12 31 . . . . . . . . . . . . . . 15  |-  ( ( ( E `  ( F `  3 )
)  =  { D ,  A }  /\  ( E `  ( F `  0 ) )  =  { A ,  B } )  ->  (
( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) ) )  ->  B  =/=  D ) )
151150ex 434 . . . . . . . . . . . . . 14  |-  ( ( E `  ( F `
 3 ) )  =  { D ,  A }  ->  ( ( E `  ( F `
 0 ) )  =  { A ,  B }  ->  ( ( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) ) )  ->  B  =/=  D
) ) )
152151adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } )  ->  (
( E `  ( F `  0 )
)  =  { A ,  B }  ->  (
( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) ) )  ->  B  =/=  D ) ) )
153152com12 31 . . . . . . . . . . . 12  |-  ( ( E `  ( F `
 0 ) )  =  { A ,  B }  ->  ( ( ( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } )  ->  (
( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) ) )  ->  B  =/=  D ) ) )
154153adantr 465 . . . . . . . . . . 11  |-  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  ->  (
( ( E `  ( F `  2 ) )  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } )  ->  (
( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) ) )  ->  B  =/=  D ) ) )
155154imp 429 . . . . . . . . . 10  |-  ( ( ( ( E `  ( F `  0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) ) )  ->  B  =/=  D ) )
156155com12 31 . . . . . . . . 9  |-  ( ( B  =  D  /\  ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) ) )  ->  ( ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  ->  B  =/=  D ) )
157156expimpd 603 . . . . . . . 8  |-  ( B  =  D  ->  (
( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  B  =/=  D
) )
158 ax-1 6 . . . . . . . 8  |-  ( B  =/=  D  ->  (
( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  B  =/=  D
) )
159157, 158pm2.61ine 2770 . . . . . . 7  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 ) )  /\  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  B  =/=  D
)
160159adantl 466 . . . . . 6  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  B  =/=  D )
161 usgraedgrn 24508 . . . . . . . . . . . 12  |-  ( ( V USGrph  E  /\  { C ,  D }  e.  ran  E )  ->  C  =/=  D )
162161ex 434 . . . . . . . . . . 11  |-  ( V USGrph  E  ->  ( { C ,  D }  e.  ran  E  ->  C  =/=  D
) )
163162ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 ) )  /\  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  ( { C ,  D }  e.  ran  E  ->  C  =/=  D
) )
164163com12 31 . . . . . . . . 9  |-  ( { C ,  D }  e.  ran  E  ->  (
( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  C  =/=  D
) )
165164adantr 465 . . . . . . . 8  |-  ( ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E )  -> 
( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  C  =/=  D
) )
166165adantl 466 . . . . . . 7  |-  ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  ->  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  /\  ( ( ( E `
 ( F ` 
0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  ( ( E `  ( F `  2 ) )  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  C  =/=  D
) )
167166imp 429 . . . . . 6  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  C  =/=  D )
168114, 160, 1673jca 1176 . . . . 5  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  ( B  =/=  C  /\  B  =/= 
D  /\  C  =/=  D ) )
169107, 168jca 532 . . . 4  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  ( ( A  =/=  B  /\  A  =/=  C  /\  A  =/= 
D )  /\  ( B  =/=  C  /\  B  =/=  D  /\  C  =/= 
D ) ) )
17040, 169jca 532 . . 3  |-  ( ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F
)  =  4 ) )  /\  ( ( ( E `  ( F `  0 )
)  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) ) )  ->  ( (
( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( A  =/=  B  /\  A  =/=  C  /\  A  =/= 
D )  /\  ( B  =/=  C  /\  B  =/=  D  /\  C  =/= 
D ) ) ) )
17139, 170mpancom 669 . 2  |-  ( ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `  F )  =  4 ) )  /\  ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) ) )  ->  ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( A  =/=  B  /\  A  =/=  C  /\  A  =/= 
D )  /\  ( B  =/=  C  /\  B  =/=  D  /\  C  =/= 
D ) ) ) )
172171ex 434 1  |-  ( ( V USGrph  E  /\  ( F  e. Word  dom  E  /\  Fun  `' F  /\  ( # `
 F )  =  4 ) )  -> 
( ( ( ( E `  ( F `
 0 ) )  =  { A ,  B }  /\  ( E `  ( F `  1 ) )  =  { B ,  C } )  /\  (
( E `  ( F `  2 )
)  =  { C ,  D }  /\  ( E `  ( F `  3 ) )  =  { D ,  A } ) )  -> 
( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E )  /\  ( { C ,  D }  e.  ran  E  /\  { D ,  A }  e.  ran  E ) )  /\  ( ( A  =/=  B  /\  A  =/=  C  /\  A  =/= 
D )  /\  ( B  =/=  C  /\  B  =/=  D  /\  C  =/= 
D ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   {cpr 4034   class class class wbr 4456   `'ccnv 5007   dom cdm 5008   ran crn 5009   Fun wfun 5588   -->wf 5590   -1-1->wf1 5591   ` cfv 5594  (class class class)co 6296   0cc0 9509   1c1 9510    < clt 9645   NNcn 10556   2c2 10606   3c3 10607   4c4 10608   NN0cn0 10816  ..^cfzo 11821   #chash 12408  Word cword 12538   USGrph cusg 24457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-fzo 11822  df-hash 12409  df-word 12546  df-usgra 24460
This theorem is referenced by:  4cycl4dv4e  24795
  Copyright terms: Public domain W3C validator