Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1eq2 | Structured version Visualization version GIF version |
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1eq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 5940 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
2 | 1 | anbi1d 737 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹) ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹))) |
3 | df-f1 5809 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
4 | df-f1 5809 | . 2 ⊢ (𝐹:𝐵–1-1→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹)) | |
5 | 2, 3, 4 | 3bitr4g 302 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ◡ccnv 5037 Fun wfun 5798 ⟶wf 5800 –1-1→wf1 5801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-an 385 df-cleq 2603 df-fn 5807 df-f 5808 df-f1 5809 |
This theorem is referenced by: f1oeq2 6041 f1eq123d 6044 f10d 6082 brdomg 7851 marypha1lem 8222 fseqenlem1 8730 dfac12lem2 8849 dfac12lem3 8850 ackbij2 8948 iundom2g 9241 hashf1 13098 istrkg3ld 25160 isuslgra 25872 isusgra 25873 ausisusgra 25884 uslgra1 25901 usgra1 25902 cusgraexilem2 25996 2trllemE 26083 constr1trl 26118 fargshiftf1 26165 usgrcyclnl2 26169 4cycl4dv 26195 matunitlindflem2 32576 eldioph2lem2 36342 ausgrusgrb 40395 usgr0 40469 uspgr1e 40470 usgrexi 40661 usgr2pthlem 40969 usgr2pth 40970 aacllem 42356 |
Copyright terms: Public domain | W3C validator |