MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem3 Structured version   Visualization version   GIF version

Theorem vdwlem3 15525
Description: Lemma for vdw 15536. (Contributed by Mario Carneiro, 13-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem3.a (𝜑𝐴 ∈ (1...𝑉))
vdwlem3.b (𝜑𝐵 ∈ (1...𝑊))
Assertion
Ref Expression
vdwlem3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))

Proof of Theorem vdwlem3
StepHypRef Expression
1 vdwlem3.b . . . . . 6 (𝜑𝐵 ∈ (1...𝑊))
2 elfznn 12241 . . . . . 6 (𝐵 ∈ (1...𝑊) → 𝐵 ∈ ℕ)
31, 2syl 17 . . . . 5 (𝜑𝐵 ∈ ℕ)
4 vdwlem3.w . . . . . 6 (𝜑𝑊 ∈ ℕ)
5 vdwlem3.a . . . . . . . . 9 (𝜑𝐴 ∈ (1...𝑉))
6 elfznn 12241 . . . . . . . . 9 (𝐴 ∈ (1...𝑉) → 𝐴 ∈ ℕ)
75, 6syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℕ)
8 nnm1nn0 11211 . . . . . . . 8 (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0)
97, 8syl 17 . . . . . . 7 (𝜑 → (𝐴 − 1) ∈ ℕ0)
10 vdwlem3.v . . . . . . 7 (𝜑𝑉 ∈ ℕ)
11 nn0nnaddcl 11201 . . . . . . 7 (((𝐴 − 1) ∈ ℕ0𝑉 ∈ ℕ) → ((𝐴 − 1) + 𝑉) ∈ ℕ)
129, 10, 11syl2anc 691 . . . . . 6 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℕ)
134, 12nnmulcld 10945 . . . . 5 (𝜑 → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ)
143, 13nnaddcld 10944 . . . 4 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ)
1514nnred 10912 . . 3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℝ)
167, 10nnaddcld 10944 . . . . 5 (𝜑 → (𝐴 + 𝑉) ∈ ℕ)
174, 16nnmulcld 10945 . . . 4 (𝜑 → (𝑊 · (𝐴 + 𝑉)) ∈ ℕ)
1817nnred 10912 . . 3 (𝜑 → (𝑊 · (𝐴 + 𝑉)) ∈ ℝ)
19 2nn 11062 . . . . . 6 2 ∈ ℕ
20 nnmulcl 10920 . . . . . 6 ((2 ∈ ℕ ∧ 𝑉 ∈ ℕ) → (2 · 𝑉) ∈ ℕ)
2119, 10, 20sylancr 694 . . . . 5 (𝜑 → (2 · 𝑉) ∈ ℕ)
224, 21nnmulcld 10945 . . . 4 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℕ)
2322nnred 10912 . . 3 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℝ)
24 elfzle2 12216 . . . . . 6 (𝐵 ∈ (1...𝑊) → 𝐵𝑊)
251, 24syl 17 . . . . 5 (𝜑𝐵𝑊)
26 nnre 10904 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
27 nnre 10904 . . . . . . 7 (𝑊 ∈ ℕ → 𝑊 ∈ ℝ)
28 nnre 10904 . . . . . . 7 ((𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℝ)
29 leadd1 10375 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑊 ∈ ℝ ∧ (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℝ) → (𝐵𝑊 ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
3026, 27, 28, 29syl3an 1360 . . . . . 6 ((𝐵 ∈ ℕ ∧ 𝑊 ∈ ℕ ∧ (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ) → (𝐵𝑊 ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
313, 4, 13, 30syl3anc 1318 . . . . 5 (𝜑 → (𝐵𝑊 ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
3225, 31mpbid 221 . . . 4 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉))))
334nncnd 10913 . . . . . 6 (𝜑𝑊 ∈ ℂ)
34 1cnd 9935 . . . . . 6 (𝜑 → 1 ∈ ℂ)
3512nncnd 10913 . . . . . 6 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℂ)
3633, 34, 35adddid 9943 . . . . 5 (𝜑 → (𝑊 · (1 + ((𝐴 − 1) + 𝑉))) = ((𝑊 · 1) + (𝑊 · ((𝐴 − 1) + 𝑉))))
379nn0cnd 11230 . . . . . . . 8 (𝜑 → (𝐴 − 1) ∈ ℂ)
3810nncnd 10913 . . . . . . . 8 (𝜑𝑉 ∈ ℂ)
3934, 37, 38addassd 9941 . . . . . . 7 (𝜑 → ((1 + (𝐴 − 1)) + 𝑉) = (1 + ((𝐴 − 1) + 𝑉)))
40 ax-1cn 9873 . . . . . . . . 9 1 ∈ ℂ
417nncnd 10913 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
42 pncan3 10168 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + (𝐴 − 1)) = 𝐴)
4340, 41, 42sylancr 694 . . . . . . . 8 (𝜑 → (1 + (𝐴 − 1)) = 𝐴)
4443oveq1d 6564 . . . . . . 7 (𝜑 → ((1 + (𝐴 − 1)) + 𝑉) = (𝐴 + 𝑉))
4539, 44eqtr3d 2646 . . . . . 6 (𝜑 → (1 + ((𝐴 − 1) + 𝑉)) = (𝐴 + 𝑉))
4645oveq2d 6565 . . . . 5 (𝜑 → (𝑊 · (1 + ((𝐴 − 1) + 𝑉))) = (𝑊 · (𝐴 + 𝑉)))
4733mulid1d 9936 . . . . . 6 (𝜑 → (𝑊 · 1) = 𝑊)
4847oveq1d 6564 . . . . 5 (𝜑 → ((𝑊 · 1) + (𝑊 · ((𝐴 − 1) + 𝑉))) = (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉))))
4936, 46, 483eqtr3d 2652 . . . 4 (𝜑 → (𝑊 · (𝐴 + 𝑉)) = (𝑊 + (𝑊 · ((𝐴 − 1) + 𝑉))))
5032, 49breqtrrd 4611 . . 3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (𝐴 + 𝑉)))
517nnred 10912 . . . . . 6 (𝜑𝐴 ∈ ℝ)
5210nnred 10912 . . . . . 6 (𝜑𝑉 ∈ ℝ)
53 elfzle2 12216 . . . . . . 7 (𝐴 ∈ (1...𝑉) → 𝐴𝑉)
545, 53syl 17 . . . . . 6 (𝜑𝐴𝑉)
5551, 52, 52, 54leadd1dd 10520 . . . . 5 (𝜑 → (𝐴 + 𝑉) ≤ (𝑉 + 𝑉))
56382timesd 11152 . . . . 5 (𝜑 → (2 · 𝑉) = (𝑉 + 𝑉))
5755, 56breqtrrd 4611 . . . 4 (𝜑 → (𝐴 + 𝑉) ≤ (2 · 𝑉))
5816nnred 10912 . . . . 5 (𝜑 → (𝐴 + 𝑉) ∈ ℝ)
5921nnred 10912 . . . . 5 (𝜑 → (2 · 𝑉) ∈ ℝ)
604nnred 10912 . . . . 5 (𝜑𝑊 ∈ ℝ)
614nngt0d 10941 . . . . 5 (𝜑 → 0 < 𝑊)
62 lemul2 10755 . . . . 5 (((𝐴 + 𝑉) ∈ ℝ ∧ (2 · 𝑉) ∈ ℝ ∧ (𝑊 ∈ ℝ ∧ 0 < 𝑊)) → ((𝐴 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝐴 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
6358, 59, 60, 61, 62syl112anc 1322 . . . 4 (𝜑 → ((𝐴 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝐴 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
6457, 63mpbid 221 . . 3 (𝜑 → (𝑊 · (𝐴 + 𝑉)) ≤ (𝑊 · (2 · 𝑉)))
6515, 18, 23, 50, 64letrd 10073 . 2 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (2 · 𝑉)))
66 nnuz 11599 . . . 4 ℕ = (ℤ‘1)
6714, 66syl6eleq 2698 . . 3 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (ℤ‘1))
6822nnzd 11357 . . 3 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℤ)
69 elfz5 12205 . . 3 (((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (ℤ‘1) ∧ (𝑊 · (2 · 𝑉)) ∈ ℤ) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))) ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (2 · 𝑉))))
7067, 68, 69syl2anc 691 . 2 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))) ↔ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ≤ (𝑊 · (2 · 𝑉))))
7165, 70mpbird 246 1 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198
This theorem is referenced by:  vdwlem4  15526  vdwlem6  15528
  Copyright terms: Public domain W3C validator