MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem2 Structured version   Visualization version   GIF version

Theorem vdwlem2 15524
Description: Lemma for vdw 15536. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem2.r (𝜑𝑅 ∈ Fin)
vdwlem2.k (𝜑𝐾 ∈ ℕ0)
vdwlem2.w (𝜑𝑊 ∈ ℕ)
vdwlem2.n (𝜑𝑁 ∈ ℕ)
vdwlem2.f (𝜑𝐹:(1...𝑀)⟶𝑅)
vdwlem2.m (𝜑𝑀 ∈ (ℤ‘(𝑊 + 𝑁)))
vdwlem2.g 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑁)))
Assertion
Ref Expression
vdwlem2 (𝜑 → (𝐾 MonoAP 𝐺𝐾 MonoAP 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐾   𝑥,𝑀   𝜑,𝑥   𝑥,𝐺   𝑥,𝑁   𝑥,𝑅   𝑥,𝑊

Proof of Theorem vdwlem2
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 (𝑎 ∈ ℕ → 𝑎 ∈ ℕ)
2 vdwlem2.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
3 nnaddcl 10919 . . . . . 6 ((𝑎 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑎 + 𝑁) ∈ ℕ)
41, 2, 3syl2anr 494 . . . . 5 ((𝜑𝑎 ∈ ℕ) → (𝑎 + 𝑁) ∈ ℕ)
5 simpllr 795 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℕ)
65nncnd 10913 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℂ)
72ad3antrrr 762 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℕ)
87nncnd 10913 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℂ)
9 elfznn0 12302 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0)
109adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℕ0)
1110nn0cnd 11230 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ)
12 simplrl 796 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℕ)
1312nncnd 10913 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℂ)
1411, 13mulcld 9939 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝑑) ∈ ℂ)
156, 8, 14add32d 10142 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + 𝑁) + (𝑚 · 𝑑)) = ((𝑎 + (𝑚 · 𝑑)) + 𝑁))
16 simplrr 797 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))
17 eqid 2610 . . . . . . . . . . . . . . . . . . . 20 (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑚 · 𝑑))
18 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (𝑛 · 𝑑) = (𝑚 · 𝑑))
1918oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → (𝑎 + (𝑛 · 𝑑)) = (𝑎 + (𝑚 · 𝑑)))
2019eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → ((𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)) ↔ (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑚 · 𝑑))))
2120rspcev 3282 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ (0...(𝐾 − 1)) ∧ (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑚 · 𝑑))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)))
2217, 21mpan2 703 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)))
2322adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)))
24 vdwlem2.k . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ ℕ0)
2524ad2antrr 758 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → 𝐾 ∈ ℕ0)
2625adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈ ℕ0)
27 vdwapval 15515 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ0𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑))))
2826, 5, 12, 27syl3anc 1318 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑))))
2923, 28mpbird 246 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑))
3016, 29sseldd 3569 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (𝐺 “ {𝑐}))
31 elfznn 12241 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (1...𝑊) → 𝑥 ∈ ℕ)
32 nnaddcl 10919 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑥 + 𝑁) ∈ ℕ)
3331, 2, 32syl2anr 494 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈ ℕ)
34 nnuz 11599 . . . . . . . . . . . . . . . . . . . . . . 23 ℕ = (ℤ‘1)
3533, 34syl6eleq 2698 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈ (ℤ‘1))
36 vdwlem2.m . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑀 ∈ (ℤ‘(𝑊 + 𝑁)))
3736adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (1...𝑊)) → 𝑀 ∈ (ℤ‘(𝑊 + 𝑁)))
38 elfzuz3 12210 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (1...𝑊) → 𝑊 ∈ (ℤ𝑥))
392nnzd 11357 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑁 ∈ ℤ)
40 eluzadd 11592 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ (ℤ𝑥) ∧ 𝑁 ∈ ℤ) → (𝑊 + 𝑁) ∈ (ℤ‘(𝑥 + 𝑁)))
4138, 39, 40syl2anr 494 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (1...𝑊)) → (𝑊 + 𝑁) ∈ (ℤ‘(𝑥 + 𝑁)))
42 uztrn 11580 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ (ℤ‘(𝑊 + 𝑁)) ∧ (𝑊 + 𝑁) ∈ (ℤ‘(𝑥 + 𝑁))) → 𝑀 ∈ (ℤ‘(𝑥 + 𝑁)))
4337, 41, 42syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (1...𝑊)) → 𝑀 ∈ (ℤ‘(𝑥 + 𝑁)))
44 elfzuzb 12207 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 + 𝑁) ∈ (1...𝑀) ↔ ((𝑥 + 𝑁) ∈ (ℤ‘1) ∧ 𝑀 ∈ (ℤ‘(𝑥 + 𝑁))))
4535, 43, 44sylanbrc 695 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈ (1...𝑀))
46 vdwlem2.f . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹:(1...𝑀)⟶𝑅)
4746ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 + 𝑁) ∈ (1...𝑀)) → (𝐹‘(𝑥 + 𝑁)) ∈ 𝑅)
4845, 47syldan 486 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...𝑊)) → (𝐹‘(𝑥 + 𝑁)) ∈ 𝑅)
49 vdwlem2.g . . . . . . . . . . . . . . . . . . . 20 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑁)))
5048, 49fmptd 6292 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐺:(1...𝑊)⟶𝑅)
51 ffn 5958 . . . . . . . . . . . . . . . . . . 19 (𝐺:(1...𝑊)⟶𝑅𝐺 Fn (1...𝑊))
5250, 51syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺 Fn (1...𝑊))
5352ad3antrrr 762 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐺 Fn (1...𝑊))
54 fniniseg 6246 . . . . . . . . . . . . . . . . 17 (𝐺 Fn (1...𝑊) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝐺 “ {𝑐}) ↔ ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐)))
5553, 54syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝐺 “ {𝑐}) ↔ ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐)))
5630, 55mpbid 221 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐))
5756simpld 474 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊))
5845ralrimiva 2949 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ (1...𝑊)(𝑥 + 𝑁) ∈ (1...𝑀))
5958ad3antrrr 762 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ∀𝑥 ∈ (1...𝑊)(𝑥 + 𝑁) ∈ (1...𝑀))
60 oveq1 6556 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝑥 + 𝑁) = ((𝑎 + (𝑚 · 𝑑)) + 𝑁))
6160eleq1d 2672 . . . . . . . . . . . . . . 15 (𝑥 = (𝑎 + (𝑚 · 𝑑)) → ((𝑥 + 𝑁) ∈ (1...𝑀) ↔ ((𝑎 + (𝑚 · 𝑑)) + 𝑁) ∈ (1...𝑀)))
6261rspcv 3278 . . . . . . . . . . . . . 14 ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) → (∀𝑥 ∈ (1...𝑊)(𝑥 + 𝑁) ∈ (1...𝑀) → ((𝑎 + (𝑚 · 𝑑)) + 𝑁) ∈ (1...𝑀)))
6357, 59, 62sylc 63 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) + 𝑁) ∈ (1...𝑀))
6415, 63eqeltrd 2688 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀))
6515fveq2d 6107 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)))
6660fveq2d 6107 . . . . . . . . . . . . . . 15 (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝐹‘(𝑥 + 𝑁)) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)))
67 fvex 6113 . . . . . . . . . . . . . . 15 (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)) ∈ V
6866, 49, 67fvmpt 6191 . . . . . . . . . . . . . 14 ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)))
6957, 68syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)))
7056simprd 478 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐)
7165, 69, 703eqtr2d 2650 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐)
7264, 71jca 553 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀) ∧ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐))
73 eleq1 2676 . . . . . . . . . . . 12 (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ↔ ((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀)))
74 fveq2 6103 . . . . . . . . . . . . 13 (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝐹𝑥) = (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))))
7574eqeq1d 2612 . . . . . . . . . . . 12 (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → ((𝐹𝑥) = 𝑐 ↔ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐))
7673, 75anbi12d 743 . . . . . . . . . . 11 (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → ((𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐) ↔ (((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀) ∧ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐)))
7772, 76syl5ibrcom 236 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐)))
7877rexlimdva 3013 . . . . . . . . 9 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐)))
794adantr 480 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (𝑎 + 𝑁) ∈ ℕ)
80 simprl 790 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → 𝑑 ∈ ℕ)
81 vdwapval 15515 . . . . . . . . . 10 ((𝐾 ∈ ℕ0 ∧ (𝑎 + 𝑁) ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑))))
8225, 79, 80, 81syl3anc 1318 . . . . . . . . 9 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑))))
83 ffn 5958 . . . . . . . . . . . 12 (𝐹:(1...𝑀)⟶𝑅𝐹 Fn (1...𝑀))
8446, 83syl 17 . . . . . . . . . . 11 (𝜑𝐹 Fn (1...𝑀))
8584ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → 𝐹 Fn (1...𝑀))
86 fniniseg 6246 . . . . . . . . . 10 (𝐹 Fn (1...𝑀) → (𝑥 ∈ (𝐹 “ {𝑐}) ↔ (𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐)))
8785, 86syl 17 . . . . . . . . 9 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (𝑥 ∈ (𝐹 “ {𝑐}) ↔ (𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐)))
8878, 82, 873imtr4d 282 . . . . . . . 8 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) → 𝑥 ∈ (𝐹 “ {𝑐})))
8988ssrdv 3574 . . . . . . 7 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
9089expr 641 . . . . . 6 (((𝜑𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
9190reximdva 3000 . . . . 5 ((𝜑𝑎 ∈ ℕ) → (∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
92 oveq1 6556 . . . . . . . 8 (𝑏 = (𝑎 + 𝑁) → (𝑏(AP‘𝐾)𝑑) = ((𝑎 + 𝑁)(AP‘𝐾)𝑑))
9392sseq1d 3595 . . . . . . 7 (𝑏 = (𝑎 + 𝑁) → ((𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
9493rexbidv 3034 . . . . . 6 (𝑏 = (𝑎 + 𝑁) → (∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
9594rspcev 3282 . . . . 5 (((𝑎 + 𝑁) ∈ ℕ ∧ ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
964, 91, 95syl6an 566 . . . 4 ((𝜑𝑎 ∈ ℕ) → (∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
9796rexlimdva 3013 . . 3 (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
9897eximdv 1833 . 2 (𝜑 → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ∃𝑐𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
99 ovex 6577 . . 3 (1...𝑊) ∈ V
10099, 24, 50vdwmc 15520 . 2 (𝜑 → (𝐾 MonoAP 𝐺 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐})))
101 ovex 6577 . . 3 (1...𝑀) ∈ V
102101, 24, 46vdwmc 15520 . 2 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
10398, 100, 1023imtr4d 282 1 (𝜑 → (𝐾 MonoAP 𝐺𝐾 MonoAP 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  wss 3540  {csn 4125   class class class wbr 4583  cmpt 4643  ccnv 5037  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  cn 10897  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  APcvdwa 15507   MonoAP cvdwm 15508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-vdwap 15510  df-vdwmc 15511
This theorem is referenced by:  vdwlem9  15531
  Copyright terms: Public domain W3C validator