MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgcopy Structured version   Visualization version   GIF version

Theorem trgcopy 25496
Description: Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: existence part. First part of Theorem 10.16 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 4-Aug-2020.)
Hypotheses
Ref Expression
trgcopy.p 𝑃 = (Base‘𝐺)
trgcopy.m = (dist‘𝐺)
trgcopy.i 𝐼 = (Itv‘𝐺)
trgcopy.l 𝐿 = (LineG‘𝐺)
trgcopy.k 𝐾 = (hlG‘𝐺)
trgcopy.g (𝜑𝐺 ∈ TarskiG)
trgcopy.a (𝜑𝐴𝑃)
trgcopy.b (𝜑𝐵𝑃)
trgcopy.c (𝜑𝐶𝑃)
trgcopy.d (𝜑𝐷𝑃)
trgcopy.e (𝜑𝐸𝑃)
trgcopy.f (𝜑𝐹𝑃)
trgcopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
trgcopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
trgcopy.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
Assertion
Ref Expression
trgcopy (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Distinct variable groups:   ,𝑓   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝐷,𝑓   𝑓,𝐸   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼   𝑓,𝐿   𝑃,𝑓   𝜑,𝑓   𝑓,𝐾

Proof of Theorem trgcopy
Dummy variables 𝑗 𝑘 𝑙 𝑞 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trgcopy.p . . . . . . 7 𝑃 = (Base‘𝐺)
2 trgcopy.m . . . . . . 7 = (dist‘𝐺)
3 eqid 2610 . . . . . . 7 (cgrG‘𝐺) = (cgrG‘𝐺)
4 trgcopy.g . . . . . . . . . . 11 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
65ad2antrr 758 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐺 ∈ TarskiG)
76ad2antrr 758 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝐺 ∈ TarskiG)
87adantr 480 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐺 ∈ TarskiG)
9 trgcopy.a . . . . . . . . . 10 (𝜑𝐴𝑃)
109ad2antrr 758 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐴𝑃)
1110ad2antrr 758 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐴𝑃)
1211ad3antrrr 762 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐴𝑃)
13 trgcopy.b . . . . . . . . . 10 (𝜑𝐵𝑃)
1413ad2antrr 758 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐵𝑃)
1514ad2antrr 758 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐵𝑃)
1615ad3antrrr 762 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐵𝑃)
17 trgcopy.c . . . . . . . . 9 (𝜑𝐶𝑃)
1817ad6antr 768 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝐶𝑃)
1918adantr 480 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐶𝑃)
20 trgcopy.d . . . . . . . . . 10 (𝜑𝐷𝑃)
2120ad2antrr 758 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐷𝑃)
2221ad2antrr 758 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐷𝑃)
2322ad3antrrr 762 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐷𝑃)
24 trgcopy.e . . . . . . . . . 10 (𝜑𝐸𝑃)
2524ad2antrr 758 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐸𝑃)
2625ad2antrr 758 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐸𝑃)
2726ad3antrrr 762 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐸𝑃)
28 simprl 790 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓𝑃)
29 trgcopy.3 . . . . . . . . 9 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
3029ad2antrr 758 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐴 𝐵) = (𝐷 𝐸))
3130ad5antr 766 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴 𝐵) = (𝐷 𝐸))
32 trgcopy.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
33 trgcopy.l . . . . . . . . . . 11 𝐿 = (LineG‘𝐺)
34 trgcopy.1 . . . . . . . . . . 11 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
351, 33, 32, 4, 13, 17, 9, 34ncoltgdim2 25260 . . . . . . . . . 10 (𝜑𝐺DimTarskiG≥2)
3635ad4antr 764 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐺DimTarskiG≥2)
3736ad3antrrr 762 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐺DimTarskiG≥2)
381, 32, 33, 4, 9, 13, 17, 34ncolne1 25320 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
391, 32, 33, 4, 9, 13, 38tgelrnln 25325 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐿𝐵) ∈ ran 𝐿)
4039ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐴𝐿𝐵) ∈ ran 𝐿)
41 simplr 788 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑥 ∈ (𝐴𝐿𝐵))
421, 33, 32, 5, 40, 41tglnpt 25244 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑥𝑃)
4342ad2antrr 758 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑥𝑃)
4443ad2antrr 758 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑥𝑃)
4544adantr 480 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥𝑃)
46 simplr 788 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑦𝑃)
4746ad2antrr 758 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑦𝑃)
4847adantr 480 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦𝑃)
4941ad5antr 766 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥 ∈ (𝐴𝐿𝐵))
5038ad7antr 770 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐴𝐵)
511, 32, 33, 8, 12, 16, 50tglinecom 25330 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
5249, 51eleqtrd 2690 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥 ∈ (𝐵𝐿𝐴))
53 simp-6r 807 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵))
5433, 8, 53perpln1 25405 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶𝐿𝑥) ∈ ran 𝐿)
5540ad5antr 766 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵) ∈ ran 𝐿)
561, 2, 32, 33, 8, 54, 55, 53perpcom 25408 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐶𝐿𝑥))
571, 33, 32, 4, 13, 17, 9, 34ncolrot2 25258 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
58 ioran 510 . . . . . . . . . . . . . . . . . 18 (¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ↔ (¬ 𝐶 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵))
5957, 58sylib 207 . . . . . . . . . . . . . . . . 17 (𝜑 → (¬ 𝐶 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵))
6059simpld 474 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝐶 ∈ (𝐴𝐿𝐵))
6160ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ¬ 𝐶 ∈ (𝐴𝐿𝐵))
62 nelne2 2879 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝑥𝐶)
6341, 61, 62syl2anc 691 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑥𝐶)
6463ad4antr 764 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑥𝐶)
6564adantr 480 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥𝐶)
6665necomd 2837 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐶𝑥)
671, 32, 33, 8, 19, 45, 66tglinecom 25330 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶𝐿𝑥) = (𝑥𝐿𝐶))
6856, 51, 673brtr3d 4614 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝑥𝐿𝐶))
691, 2, 32, 33, 8, 16, 12, 52, 19, 68perprag 25418 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐵𝑥𝐶”⟩ ∈ (∟G‘𝐺))
701, 2, 32, 4, 9, 13, 20, 24, 29, 38tgcgrneq 25178 . . . . . . . . . . . 12 (𝜑𝐷𝐸)
7170necomd 2837 . . . . . . . . . . 11 (𝜑𝐸𝐷)
7271ad7antr 770 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐸𝐷)
7370ad4antr 764 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐷𝐸)
7473neneqd 2787 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ¬ 𝐷 = 𝐸)
7541orcd 406 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝑥 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
761, 33, 32, 5, 10, 14, 42, 75colrot2 25255 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐵 ∈ (𝑥𝐿𝐴) ∨ 𝑥 = 𝐴))
771, 33, 32, 5, 42, 10, 14, 76colcom 25253 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐵 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥))
7877ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐵 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥))
79 simpr 476 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
801, 33, 32, 6, 11, 15, 43, 3, 22, 26, 46, 78, 79lnxfr 25261 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐸 ∈ (𝐷𝐿𝑦) ∨ 𝐷 = 𝑦))
811, 33, 32, 6, 22, 46, 26, 80colrot2 25255 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑦 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
821, 33, 32, 6, 26, 22, 46, 81colcom 25253 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑦 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
8382orcomd 402 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐷 = 𝐸𝑦 ∈ (𝐷𝐿𝐸)))
8483ord 391 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (¬ 𝐷 = 𝐸𝑦 ∈ (𝐷𝐿𝐸)))
8574, 84mpd 15 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑦 ∈ (𝐷𝐿𝐸))
8685ad3antrrr 762 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦 ∈ (𝐷𝐿𝐸))
871, 32, 33, 8, 27, 23, 48, 72, 86lncom 25317 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦 ∈ (𝐸𝐿𝐷))
88 simprrr 801 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦 𝑓) = (𝑥 𝐶))
8988eqcomd 2616 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑥 𝐶) = (𝑦 𝑓))
901, 2, 32, 8, 45, 19, 48, 28, 89, 65tgcgrneq 25178 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦𝑓)
911, 32, 33, 8, 48, 28, 90tgelrnln 25325 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑓) ∈ ran 𝐿)
921, 32, 33, 8, 27, 23, 72tgelrnln 25325 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷) ∈ ran 𝐿)
93 simpllr 795 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑞𝑃)
94 simplr 788 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑞𝑃)
95 simprl 790 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦))
9633, 7, 95perpln2 25406 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → (𝑞𝐿𝑦) ∈ ran 𝐿)
971, 32, 33, 7, 94, 47, 96tglnne 25323 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑞𝑦)
9897adantr 480 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑞𝑦)
9998necomd 2837 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦𝑞)
1001, 32, 33, 8, 48, 93, 99tgelrnln 25325 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑞) ∈ ran 𝐿)
10195adantr 480 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦))
1021, 32, 33, 8, 27, 23, 72tglinecom 25330 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷) = (𝐷𝐿𝐸))
1031, 32, 33, 8, 48, 93, 100tglnne 25323 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦𝑞)
1041, 32, 33, 8, 48, 93, 103tglinecom 25330 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑞) = (𝑞𝐿𝑦))
105101, 102, 1043brtr4d 4615 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷)(⟂G‘𝐺)(𝑦𝐿𝑞))
1061, 2, 32, 33, 8, 92, 100, 105perpcom 25408 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑞)(⟂G‘𝐺)(𝐸𝐿𝐷))
107 trgcopy.k . . . . . . . . . . . . . 14 𝐾 = (hlG‘𝐺)
108 simprrl 800 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓(𝐾𝑦)𝑞)
1091, 32, 107, 28, 93, 48, 8, 33, 108hlln 25302 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓 ∈ (𝑞𝐿𝑦))
1101, 32, 33, 8, 48, 93, 28, 99, 109lncom 25317 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓 ∈ (𝑦𝐿𝑞))
111110orcd 406 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑓 ∈ (𝑦𝐿𝑞) ∨ 𝑦 = 𝑞))
1121, 2, 32, 33, 8, 48, 93, 28, 106, 111, 90colperp 25421 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑓)(⟂G‘𝐺)(𝐸𝐿𝐷))
1131, 2, 32, 33, 8, 91, 92, 112perpcom 25408 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷)(⟂G‘𝐺)(𝑦𝐿𝑓))
1141, 2, 32, 33, 8, 27, 23, 87, 28, 113perprag 25418 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐸𝑦𝑓”⟩ ∈ (∟G‘𝐺))
11579ad3antrrr 762 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
1161, 2, 32, 3, 8, 12, 16, 45, 23, 27, 48, 115cgr3simp2 25216 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐵 𝑥) = (𝐸 𝑦))
1171, 2, 32, 8, 37, 16, 45, 19, 27, 48, 28, 69, 114, 116, 89hypcgr 25493 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐵 𝐶) = (𝐸 𝑓))
118 eqid 2610 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
11951, 68eqbrtrd 4605 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑥𝐿𝐶))
1201, 2, 32, 33, 8, 12, 16, 49, 19, 119perprag 25418 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐴𝑥𝐶”⟩ ∈ (∟G‘𝐺))
1211, 2, 32, 33, 118, 8, 12, 45, 19, 120ragcom 25393 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐶𝑥𝐴”⟩ ∈ (∟G‘𝐺))
122102, 113eqbrtrrd 4607 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑦𝐿𝑓))
1231, 2, 32, 33, 8, 23, 27, 86, 28, 122perprag 25418 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐷𝑦𝑓”⟩ ∈ (∟G‘𝐺))
1241, 2, 32, 33, 118, 8, 23, 48, 28, 123ragcom 25393 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝑓𝑦𝐷”⟩ ∈ (∟G‘𝐺))
1251, 2, 32, 8, 45, 19, 48, 28, 89tgcgrcomlr 25175 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶 𝑥) = (𝑓 𝑦))
1261, 2, 32, 3, 8, 12, 16, 45, 23, 27, 48, 115cgr3simp3 25217 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑥 𝐴) = (𝑦 𝐷))
1271, 2, 32, 8, 37, 19, 45, 12, 28, 48, 23, 121, 124, 125, 126hypcgr 25493 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶 𝐴) = (𝑓 𝐷))
1281, 2, 3, 8, 12, 16, 19, 23, 27, 28, 31, 117, 127trgcgr 25211 . . . . . 6 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩)
1291, 32, 33, 4, 20, 24, 70tgelrnln 25325 . . . . . . . . 9 (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿)
130129ad4antr 764 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐷𝐿𝐸) ∈ ran 𝐿)
131130ad3antrrr 762 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐷𝐿𝐸) ∈ ran 𝐿)
132 simpl 472 . . . . . . . . . . 11 ((𝑤 = 𝑘𝑣 = 𝑙) → 𝑤 = 𝑘)
133 eqidd 2611 . . . . . . . . . . 11 ((𝑤 = 𝑘𝑣 = 𝑙) → (𝑃 ∖ (𝐷𝐿𝐸)) = (𝑃 ∖ (𝐷𝐿𝐸)))
134132, 133eleq12d 2682 . . . . . . . . . 10 ((𝑤 = 𝑘𝑣 = 𝑙) → (𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ↔ 𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸))))
135 simpr 476 . . . . . . . . . . 11 ((𝑤 = 𝑘𝑣 = 𝑙) → 𝑣 = 𝑙)
136135, 133eleq12d 2682 . . . . . . . . . 10 ((𝑤 = 𝑘𝑣 = 𝑙) → (𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ↔ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸))))
137134, 136anbi12d 743 . . . . . . . . 9 ((𝑤 = 𝑘𝑣 = 𝑙) → ((𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ↔ (𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸)))))
138 simpr 476 . . . . . . . . . . 11 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → 𝑧 = 𝑗)
139 simpll 786 . . . . . . . . . . . 12 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → 𝑤 = 𝑘)
140 simplr 788 . . . . . . . . . . . 12 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → 𝑣 = 𝑙)
141139, 140oveq12d 6567 . . . . . . . . . . 11 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → (𝑤𝐼𝑣) = (𝑘𝐼𝑙))
142138, 141eleq12d 2682 . . . . . . . . . 10 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → (𝑧 ∈ (𝑤𝐼𝑣) ↔ 𝑗 ∈ (𝑘𝐼𝑙)))
143142cbvrexdva 3154 . . . . . . . . 9 ((𝑤 = 𝑘𝑣 = 𝑙) → (∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑤𝐼𝑣) ↔ ∃𝑗 ∈ (𝐷𝐿𝐸)𝑗 ∈ (𝑘𝐼𝑙)))
144137, 143anbi12d 743 . . . . . . . 8 ((𝑤 = 𝑘𝑣 = 𝑙) → (((𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑤𝐼𝑣)) ↔ ((𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑗 ∈ (𝐷𝐿𝐸)𝑗 ∈ (𝑘𝐼𝑙))))
145144cbvopabv 4654 . . . . . . 7 {⟨𝑤, 𝑣⟩ ∣ ((𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑤𝐼𝑣))} = {⟨𝑘, 𝑙⟩ ∣ ((𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑗 ∈ (𝐷𝐿𝐸)𝑗 ∈ (𝑘𝐼𝑙))}
1468adantr 480 . . . . . . . . . . 11 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐺 ∈ TarskiG)
14719adantr 480 . . . . . . . . . . 11 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐶𝑃)
14816adantr 480 . . . . . . . . . . 11 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐵𝑃)
14912adantr 480 . . . . . . . . . . 11 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐴𝑃)
15023adantr 480 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐷𝑃)
15127adantr 480 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐸𝑃)
15228adantr 480 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝑓𝑃)
15371ad8antr 772 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐸𝐷)
154 simpr 476 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝑓 ∈ (𝐷𝐿𝐸))
1551, 32, 33, 146, 151, 150, 152, 153, 154lncom 25317 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝑓 ∈ (𝐸𝐿𝐷))
156155orcd 406 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝑓 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
1571, 33, 32, 146, 151, 150, 152, 156colrot1 25254 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐸 ∈ (𝐷𝐿𝑓) ∨ 𝐷 = 𝑓))
158128adantr 480 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩)
1591, 2, 32, 3, 146, 149, 148, 147, 150, 151, 152, 158trgcgrcom 25223 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → ⟨“𝐷𝐸𝑓”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝐶”⟩)
1601, 33, 32, 146, 150, 151, 152, 3, 149, 148, 147, 157, 159lnxfr 25261 . . . . . . . . . . . 12 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
1611, 33, 32, 146, 149, 147, 148, 160colrot1 25254 . . . . . . . . . . 11 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
1621, 33, 32, 146, 147, 148, 149, 161colcom 25253 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
16334ad8antr 772 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
164162, 163pm2.65da 598 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ¬ 𝑓 ∈ (𝐷𝐿𝐸))
165108, 164jca 553 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑓(𝐾𝑦)𝑞 ∧ ¬ 𝑓 ∈ (𝐷𝐿𝐸)))
166109orcd 406 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑓 ∈ (𝑞𝐿𝑦) ∨ 𝑞 = 𝑦))
1671, 33, 32, 8, 93, 48, 28, 166colrot2 25255 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦 ∈ (𝑓𝐿𝑞) ∨ 𝑓 = 𝑞))
1681, 32, 33, 8, 131, 28, 145, 93, 86, 167, 107colhp 25462 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑞 ↔ (𝑓(𝐾𝑦)𝑞 ∧ ¬ 𝑓 ∈ (𝐷𝐿𝐸))))
169165, 168mpbird 246 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑞)
170 trgcopy.f . . . . . . . . . 10 (𝜑𝐹𝑃)
171170ad4antr 764 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐹𝑃)
172171ad2antrr 758 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝐹𝑃)
173172adantr 480 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐹𝑃)
174 simplrr 797 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
1751, 32, 33, 8, 131, 28, 145, 93, 169, 173, 174hpgtr 25460 . . . . . 6 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
176128, 175jca 553 . . . . 5 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
1771, 32, 107, 47, 44, 18, 7, 94, 2, 97, 64hlcgrex 25311 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → ∃𝑓𝑃 (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))
178176, 177reximddv 3001 . . . 4 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
179 trgcopy.2 . . . . . . . . 9 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
1801, 33, 32, 4, 24, 170, 20, 179ncolrot2 25258 . . . . . . . 8 (𝜑 → ¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
181 ioran 510 . . . . . . . 8 (¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) ↔ (¬ 𝐹 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸))
182180, 181sylib 207 . . . . . . 7 (𝜑 → (¬ 𝐹 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸))
183182simpld 474 . . . . . 6 (𝜑 → ¬ 𝐹 ∈ (𝐷𝐿𝐸))
184183ad4antr 764 . . . . 5 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ¬ 𝐹 ∈ (𝐷𝐿𝐸))
1851, 2, 32, 33, 6, 36, 130, 145, 85, 171, 184lnperpex 25495 . . . 4 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ∃𝑞𝑃 ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
186178, 185r19.29a 3060 . . 3 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
1871, 33, 32, 5, 10, 14, 42, 3, 21, 25, 2, 77, 30lnext 25262 . . 3 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
188186, 187r19.29a 3060 . 2 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
1891, 2, 32, 33, 4, 39, 17, 60footex 25413 . 2 (𝜑 → ∃𝑥 ∈ (𝐴𝐿𝐵)(𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵))
190188, 189r19.29a 3060 1 (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897  cdif 3537   class class class wbr 4583  {copab 4642  ran crn 5039  cfv 5804  (class class class)co 6549  2c2 10947  ⟨“cs3 13438  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  DimTarskiGcstrkgld 25133  Itvcitv 25135  LineGclng 25136  cgrGccgrg 25205  hlGchlg 25295  pInvGcmir 25347  ⟂Gcperpg 25390  hpGchpg 25449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkgld 25151  df-trkg 25152  df-cgrg 25206  df-ismt 25228  df-leg 25278  df-hlg 25296  df-mir 25348  df-rag 25389  df-perpg 25391  df-hpg 25450  df-mid 25466  df-lmi 25467
This theorem is referenced by:  trgcopyeu  25498  acopy  25524  cgrg3col4  25534
  Copyright terms: Public domain W3C validator