MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad6antr Structured version   Visualization version   GIF version

Theorem ad6antr 768
Description: Deduction adding 6 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypothesis
Ref Expression
ad2ant.1 (𝜑𝜓)
Assertion
Ref Expression
ad6antr (((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)

Proof of Theorem ad6antr
StepHypRef Expression
1 ad2ant.1 . . 3 (𝜑𝜓)
21ad5antr 766 . 2 ((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓)
32adantr 480 1 (((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-an 385
This theorem is referenced by:  ad7antr  770  catass  16170  funcpropd  16383  natpropd  16459  restutop  21851  utopreg  21866  restmetu  22185  lgamucov  24564  istrkgcb  25155  tgifscgr  25203  tgbtwnconn1lem3  25269  legtrd  25284  miriso  25365  footex  25413  opphllem3  25441  opphl  25446  trgcopy  25496  cgratr  25515  dfcgra2  25521  inaghl  25531  cgrg3col4  25534  f1otrge  25552  cusgrares  26001  clwlkisclwwlklem1  26315  matunitlindflem1  32575  heicant  32614  mblfinlem3  32618  limclner  38718  hoidmvle  39490  clwlkclwwlklem2  41209
  Copyright terms: Public domain W3C validator