MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfcgra2 Structured version   Visualization version   GIF version

Theorem dfcgra2 25521
Description: This is the full statement of definition 11.2 of [Schwabhauser] p. 95. This proof serves to confirm that the definition we have chosen, df-cgra 25500 is indeed equivalent with the textbook's definition. (Contributed by Thierry Arnoux, 2-Aug-2020.)
Hypotheses
Ref Expression
dfcgra2.p 𝑃 = (Base‘𝐺)
dfcgra2.i 𝐼 = (Itv‘𝐺)
dfcgra2.m = (dist‘𝐺)
dfcgra2.g (𝜑𝐺 ∈ TarskiG)
dfcgra2.a (𝜑𝐴𝑃)
dfcgra2.b (𝜑𝐵𝑃)
dfcgra2.c (𝜑𝐶𝑃)
dfcgra2.d (𝜑𝐷𝑃)
dfcgra2.e (𝜑𝐸𝑃)
dfcgra2.f (𝜑𝐹𝑃)
Assertion
Ref Expression
dfcgra2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))))
Distinct variable groups:   ,𝑎,𝑐,𝑑,𝑓   𝐴,𝑎,𝑐,𝑑,𝑓   𝐵,𝑎,𝑐,𝑑,𝑓   𝐶,𝑎,𝑐,𝑑,𝑓   𝐷,𝑎,𝑐,𝑑,𝑓   𝐸,𝑎,𝑐,𝑑,𝑓   𝐹,𝑎,𝑐,𝑑,𝑓   𝐺,𝑎,𝑐,𝑑,𝑓   𝐼,𝑎,𝑐,𝑑,𝑓   𝑃,𝑎,𝑐,𝑑,𝑓   𝜑,𝑎,𝑐,𝑑,𝑓

Proof of Theorem dfcgra2
Dummy variables 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcgra2.p . . . . 5 𝑃 = (Base‘𝐺)
2 dfcgra2.i . . . . 5 𝐼 = (Itv‘𝐺)
3 eqid 2610 . . . . 5 (hlG‘𝐺) = (hlG‘𝐺)
4 dfcgra2.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐺 ∈ TarskiG)
6 dfcgra2.a . . . . . 6 (𝜑𝐴𝑃)
76adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐴𝑃)
8 dfcgra2.b . . . . . 6 (𝜑𝐵𝑃)
98adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐵𝑃)
10 dfcgra2.c . . . . . 6 (𝜑𝐶𝑃)
1110adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐶𝑃)
12 dfcgra2.d . . . . . 6 (𝜑𝐷𝑃)
1312adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐷𝑃)
14 dfcgra2.e . . . . . 6 (𝜑𝐸𝑃)
1514adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐸𝑃)
16 dfcgra2.f . . . . . 6 (𝜑𝐹𝑃)
1716adantr 480 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐹𝑃)
18 simpr 476 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
191, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane1 25504 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐴𝐵)
201, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane2 25505 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐵𝐶)
2120necomd 2837 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐶𝐵)
2219, 21jca 553 . . 3 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐴𝐵𝐶𝐵))
231, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane3 25506 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐸𝐷)
2423necomd 2837 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐷𝐸)
251, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18cgrane4 25507 . . . . 5 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐸𝐹)
2625necomd 2837 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → 𝐹𝐸)
2724, 26jca 553 . . 3 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → (𝐷𝐸𝐹𝐸))
28 simprl 790 . . . . . . . . 9 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))))
29 simprr 792 . . . . . . . . 9 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))
305ad5antr 766 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐺 ∈ TarskiG)
31 simp-5r 805 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎𝑃)
329ad5antr 766 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐵𝑃)
33 simp-4r 803 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐𝑃)
34 simpllr 795 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑑𝑃)
3515ad5antr 766 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐸𝑃)
36 simplr 788 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑓𝑃)
3717ad5antr 766 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹𝑃)
3813ad5antr 766 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷𝑃)
3911ad5antr 766 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶𝑃)
407ad5antr 766 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴𝑃)
4118ad5antr 766 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
421, 2, 30, 3, 40, 32, 39, 38, 35, 37, 41cgracom 25514 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
4328simplld 787 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴 ∈ (𝐵𝐼𝑎))
44 dfcgra2.m . . . . . . . . . . . . . . . . . 18 = (dist‘𝐺)
4519ad5antr 766 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴𝐵)
461, 44, 2, 30, 32, 40, 31, 43, 45tgbtwnne 25185 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐵𝑎)
471, 2, 3, 32, 31, 40, 30, 40, 43, 46, 45btwnhl1 25307 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴((hlG‘𝐺)‘𝐵)𝑎)
481, 2, 3, 40, 31, 32, 30, 47hlcomd 25299 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎((hlG‘𝐺)‘𝐵)𝐴)
491, 2, 3, 30, 38, 35, 37, 40, 32, 39, 42, 31, 48cgrahl1 25508 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑎𝐵𝐶”⟩)
5028simprld 791 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶 ∈ (𝐵𝐼𝑐))
5121ad5antr 766 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶𝐵)
521, 44, 2, 30, 32, 39, 33, 50, 51tgbtwnne 25185 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐵𝑐)
531, 2, 3, 32, 33, 39, 30, 40, 50, 52, 51btwnhl1 25307 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶((hlG‘𝐺)‘𝐵)𝑐)
541, 2, 3, 39, 33, 32, 30, 53hlcomd 25299 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐((hlG‘𝐺)‘𝐵)𝐶)
551, 2, 3, 30, 38, 35, 37, 31, 32, 39, 49, 33, 54cgrahl2 25509 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑎𝐵𝑐”⟩)
561, 2, 30, 3, 38, 35, 37, 31, 32, 33, 55cgracom 25514 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝑎𝐵𝑐”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
5729simplld 787 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷 ∈ (𝐸𝐼𝑑))
5824ad5antr 766 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷𝐸)
591, 44, 2, 30, 35, 38, 34, 57, 58tgbtwnne 25185 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐸𝑑)
601, 2, 3, 35, 34, 38, 30, 40, 57, 59, 58btwnhl1 25307 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐷((hlG‘𝐺)‘𝐸)𝑑)
611, 2, 3, 38, 34, 35, 30, 60hlcomd 25299 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑑((hlG‘𝐺)‘𝐸)𝐷)
621, 2, 3, 30, 31, 32, 33, 38, 35, 37, 56, 34, 61cgrahl1 25508 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝑎𝐵𝑐”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝐹”⟩)
6329simprld 791 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹 ∈ (𝐸𝐼𝑓))
6426ad5antr 766 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹𝐸)
651, 44, 2, 30, 35, 37, 36, 63, 64tgbtwnne 25185 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐸𝑓)
661, 2, 3, 35, 36, 37, 30, 40, 63, 65, 64btwnhl1 25307 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐹((hlG‘𝐺)‘𝐸)𝑓)
671, 2, 3, 37, 36, 35, 30, 66hlcomd 25299 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑓((hlG‘𝐺)‘𝐸)𝐹)
681, 2, 3, 30, 31, 32, 33, 34, 35, 37, 62, 36, 67cgrahl2 25509 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ⟨“𝑎𝐵𝑐”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑓”⟩)
691, 2, 3, 30, 31, 32, 33, 34, 35, 36, 68cgrane1 25504 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎𝐵)
701, 2, 3, 31, 40, 32, 30, 69hlid 25304 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑎((hlG‘𝐺)‘𝐵)𝑎)
711, 2, 3, 30, 31, 32, 33, 34, 35, 36, 68cgrane2 25505 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐵𝑐)
7271necomd 2837 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐𝐵)
731, 2, 3, 33, 40, 32, 30, 72hlid 25304 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝑐((hlG‘𝐺)‘𝐵)𝑐)
741, 44, 2, 30, 32, 40, 31, 43tgbtwncom 25183 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐴 ∈ (𝑎𝐼𝐵))
7528simplrd 789 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐴 𝑎) = (𝐸 𝐷))
761, 44, 2, 30, 40, 31, 35, 38, 75tgcgrcoml 25174 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑎 𝐴) = (𝐸 𝐷))
7729simplrd 789 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐷 𝑑) = (𝐵 𝐴))
7877eqcomd 2616 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝐴) = (𝐷 𝑑))
791, 44, 2, 30, 32, 40, 38, 34, 78tgcgrcoml 25174 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐴 𝐵) = (𝐷 𝑑))
801, 44, 2, 30, 31, 40, 32, 35, 38, 34, 74, 57, 76, 79tgcgrextend 25180 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑎 𝐵) = (𝐸 𝑑))
811, 44, 2, 30, 31, 32, 35, 34, 80tgcgrcoml 25174 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝑎) = (𝐸 𝑑))
821, 44, 2, 30, 32, 39, 33, 50tgbtwncom 25183 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → 𝐶 ∈ (𝑐𝐼𝐵))
8328simprrd 793 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐶 𝑐) = (𝐸 𝐹))
841, 44, 2, 30, 39, 33, 35, 37, 83tgcgrcoml 25174 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑐 𝐶) = (𝐸 𝐹))
8529simprrd 793 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐹 𝑓) = (𝐵 𝐶))
8685eqcomd 2616 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝐶) = (𝐹 𝑓))
871, 44, 2, 30, 32, 39, 37, 36, 86tgcgrcoml 25174 . . . . . . . . . . . 12 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐶 𝐵) = (𝐹 𝑓))
881, 44, 2, 30, 33, 39, 32, 35, 37, 36, 82, 63, 84, 87tgcgrextend 25180 . . . . . . . . . . 11 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑐 𝐵) = (𝐸 𝑓))
891, 44, 2, 30, 33, 32, 35, 36, 88tgcgrcoml 25174 . . . . . . . . . 10 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝐵 𝑐) = (𝐸 𝑓))
901, 2, 3, 30, 31, 32, 33, 34, 35, 36, 68, 31, 44, 33, 70, 73, 81, 89cgracgr 25510 . . . . . . . . 9 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (𝑎 𝑐) = (𝑑 𝑓))
9128, 29, 903jca 1235 . . . . . . . 8 (((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
9291ex 449 . . . . . . 7 ((((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) ∧ 𝑓𝑃) → ((((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) → (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
9392reximdva 3000 . . . . . 6 (((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ 𝑑𝑃) → (∃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) → ∃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
9493reximdva 3000 . . . . 5 ((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) → (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) → ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
9594imp 444 . . . 4 (((((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) ∧ 𝑎𝑃) ∧ 𝑐𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))) → ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
961, 44, 2, 4, 8, 6, 14, 12axtgsegcon 25163 . . . . . . . 8 (𝜑 → ∃𝑎𝑃 (𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)))
971, 44, 2, 4, 8, 10, 14, 16axtgsegcon 25163 . . . . . . . 8 (𝜑 → ∃𝑐𝑃 (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))
98 reeanv 3086 . . . . . . . 8 (∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ↔ (∃𝑎𝑃 (𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ ∃𝑐𝑃 (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))))
9996, 97, 98sylanbrc 695 . . . . . . 7 (𝜑 → ∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))))
1001, 44, 2, 4, 14, 12, 8, 6axtgsegcon 25163 . . . . . . . 8 (𝜑 → ∃𝑑𝑃 (𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)))
1011, 44, 2, 4, 14, 16, 8, 10axtgsegcon 25163 . . . . . . . 8 (𝜑 → ∃𝑓𝑃 (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))
102 reeanv 3086 . . . . . . . 8 (∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ↔ (∃𝑑𝑃 (𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ ∃𝑓𝑃 (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))
103100, 101, 102sylanbrc 695 . . . . . . 7 (𝜑 → ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))
10499, 103jca 553 . . . . . 6 (𝜑 → (∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
105 r19.41vv 3072 . . . . . . . . 9 (∃𝑑𝑃𝑓𝑃 (((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ (∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))))
106 ancom 465 . . . . . . . . . 10 ((((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
1071062rexbii 3024 . . . . . . . . 9 (∃𝑑𝑃𝑓𝑃 (((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
108 ancom 465 . . . . . . . . 9 ((∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))) ↔ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
109105, 107, 1083bitr3i 289 . . . . . . . 8 (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
1101092rexbii 3024 . . . . . . 7 (∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ ∃𝑎𝑃𝑐𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
111 r19.41vv 3072 . . . . . . 7 (∃𝑎𝑃𝑐𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ (∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
112110, 111bitr2i 264 . . . . . 6 ((∃𝑎𝑃𝑐𝑃 ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ∃𝑑𝑃𝑓𝑃 ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))) ↔ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
113104, 112sylib 207 . . . . 5 (𝜑 → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
114113adantr 480 . . . 4 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
11595, 114reximddv2 3002 . . 3 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
11622, 27, 1153jca 1235 . 2 ((𝜑 ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩) → ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
117 df-3an 1033 . . 3 (((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) ↔ (((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸)) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))))
1184ad6antr 768 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐺 ∈ TarskiG)
11912ad6antr 768 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷𝑃)
12014ad6antr 768 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐸𝑃)
12116ad6antr 768 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹𝑃)
1226ad6antr 768 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴𝑃)
1238ad6antr 768 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐵𝑃)
12410ad6antr 768 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶𝑃)
125 simp-4r 803 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑦𝑃)
126 simp-5r 805 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑥𝑃)
127 simpllr 795 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑧𝑃)
128 simplr 788 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑡𝑃)
129 eqid 2610 . . . . . . . . . . . . . 14 (cgrG‘𝐺) = (cgrG‘𝐺)
130 simpr1 1060 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))))
131130simplld 787 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴 ∈ (𝐵𝐼𝑥))
132 simpr2 1061 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))))
133132simplld 787 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷 ∈ (𝐸𝐼𝑧))
1341, 44, 2, 118, 120, 119, 127, 133tgbtwncom 25183 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷 ∈ (𝑧𝐼𝐸))
135132simplrd 789 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐷 𝑧) = (𝐵 𝐴))
136135eqcomd 2616 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝐴) = (𝐷 𝑧))
1371, 44, 2, 118, 123, 122, 119, 127, 136tgcgrcomr 25173 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝐴) = (𝑧 𝐷))
138130simplrd 789 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐴 𝑥) = (𝐸 𝐷))
1391, 44, 2, 118, 122, 126, 120, 119, 138tgcgrcomr 25173 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐴 𝑥) = (𝐷 𝐸))
1401, 44, 2, 118, 123, 122, 126, 127, 119, 120, 131, 134, 137, 139tgcgrextend 25180 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝑥) = (𝑧 𝐸))
1411, 44, 2, 118, 123, 126, 127, 120, 140tgcgrcoml 25174 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑥 𝐵) = (𝑧 𝐸))
142130simprld 791 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶 ∈ (𝐵𝐼𝑦))
1431, 44, 2, 118, 123, 124, 125, 142tgbtwncom 25183 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶 ∈ (𝑦𝐼𝐵))
144132simprld 791 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹 ∈ (𝐸𝐼𝑡))
145130simprrd 793 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐶 𝑦) = (𝐸 𝐹))
1461, 44, 2, 118, 124, 125, 120, 121, 145tgcgrcoml 25174 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑦 𝐶) = (𝐸 𝐹))
147132simprrd 793 . . . . . . . . . . . . . . . . . 18 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐹 𝑡) = (𝐵 𝐶))
148147eqcomd 2616 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝐶) = (𝐹 𝑡))
1491, 44, 2, 118, 123, 124, 121, 128, 148tgcgrcoml 25174 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐶 𝐵) = (𝐹 𝑡))
1501, 44, 2, 118, 125, 124, 123, 120, 121, 128, 143, 144, 146, 149tgcgrextend 25180 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑦 𝐵) = (𝐸 𝑡))
1511, 44, 2, 118, 125, 123, 120, 128, 150tgcgrcoml 25174 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝐵 𝑦) = (𝐸 𝑡))
152 simpr3 1062 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑥 𝑦) = (𝑧 𝑡))
1531, 44, 2, 118, 126, 125, 127, 128, 152tgcgrcomlr 25175 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → (𝑦 𝑥) = (𝑡 𝑧))
1541, 44, 129, 118, 126, 123, 125, 127, 120, 128, 141, 151, 153trgcgr 25211 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝑥𝐵𝑦”⟩(cgrG‘𝐺)⟨“𝑧𝐸𝑡”⟩)
155 simp-6r 807 . . . . . . . . . . . . . . . . 17 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸)))
156155simprld 791 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷𝐸)
1571, 44, 2, 118, 120, 119, 127, 133, 156tgbtwnne 25185 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐸𝑧)
1581, 2, 3, 120, 127, 119, 118, 123, 133, 157, 156btwnhl1 25307 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐷((hlG‘𝐺)‘𝐸)𝑧)
1591, 2, 3, 119, 127, 120, 118, 158hlcomd 25299 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑧((hlG‘𝐺)‘𝐸)𝐷)
160155simprrd 793 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹𝐸)
1611, 44, 2, 118, 120, 121, 128, 144, 160tgbtwnne 25185 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐸𝑡)
1621, 2, 3, 120, 128, 121, 118, 123, 144, 161, 160btwnhl1 25307 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐹((hlG‘𝐺)‘𝐸)𝑡)
1631, 2, 3, 121, 128, 120, 118, 162hlcomd 25299 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝑡((hlG‘𝐺)‘𝐸)𝐹)
1641, 2, 3, 118, 126, 123, 125, 119, 120, 121, 127, 128, 154, 159, 163iscgrad 25503 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝑥𝐵𝑦”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
1651, 2, 118, 3, 126, 123, 125, 119, 120, 121, 164cgracom 25514 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑥𝐵𝑦”⟩)
166155simplld 787 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴𝐵)
1671, 44, 2, 118, 123, 122, 126, 131, 166tgbtwnne 25185 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐵𝑥)
1681, 2, 3, 123, 126, 122, 118, 122, 131, 167, 166btwnhl1 25307 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐴((hlG‘𝐺)‘𝐵)𝑥)
1691, 2, 3, 118, 119, 120, 121, 126, 123, 125, 165, 122, 168cgrahl1 25508 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝑦”⟩)
170155simplrd 789 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶𝐵)
1711, 44, 2, 118, 123, 124, 125, 142, 170tgbtwnne 25185 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐵𝑦)
1721, 2, 3, 123, 125, 124, 118, 122, 142, 171, 170btwnhl1 25307 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → 𝐶((hlG‘𝐺)‘𝐵)𝑦)
1731, 2, 3, 118, 119, 120, 121, 122, 123, 125, 169, 124, 172cgrahl2 25509 . . . . . . . . 9 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
1741, 2, 118, 3, 119, 120, 121, 122, 123, 124, 173cgracom 25514 . . . . . . . 8 (((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
175174adantl3r 782 . . . . . . 7 ((((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) ∧ 𝑧𝑃) ∧ 𝑡𝑃) ∧ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
176 simpr 476 . . . . . . . 8 (((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)))
177 eqidd 2611 . . . . . . . . . . . . 13 (𝑑 = 𝑧𝐷 = 𝐷)
178 oveq2 6557 . . . . . . . . . . . . 13 (𝑑 = 𝑧 → (𝐸𝐼𝑑) = (𝐸𝐼𝑧))
179177, 178eleq12d 2682 . . . . . . . . . . . 12 (𝑑 = 𝑧 → (𝐷 ∈ (𝐸𝐼𝑑) ↔ 𝐷 ∈ (𝐸𝐼𝑧)))
180 oveq2 6557 . . . . . . . . . . . . 13 (𝑑 = 𝑧 → (𝐷 𝑑) = (𝐷 𝑧))
181 eqidd 2611 . . . . . . . . . . . . 13 (𝑑 = 𝑧 → (𝐵 𝐴) = (𝐵 𝐴))
182180, 181eqeq12d 2625 . . . . . . . . . . . 12 (𝑑 = 𝑧 → ((𝐷 𝑑) = (𝐵 𝐴) ↔ (𝐷 𝑧) = (𝐵 𝐴)))
183179, 182anbi12d 743 . . . . . . . . . . 11 (𝑑 = 𝑧 → ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ↔ (𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴))))
184 biidd 251 . . . . . . . . . . 11 (𝑑 = 𝑧 → ((𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)) ↔ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))))
185183, 184anbi12d 743 . . . . . . . . . 10 (𝑑 = 𝑧 → (((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ↔ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)))))
186 eqidd 2611 . . . . . . . . . . 11 (𝑑 = 𝑧 → (𝑥 𝑦) = (𝑥 𝑦))
187 oveq1 6556 . . . . . . . . . . 11 (𝑑 = 𝑧 → (𝑑 𝑓) = (𝑧 𝑓))
188186, 187eqeq12d 2625 . . . . . . . . . 10 (𝑑 = 𝑧 → ((𝑥 𝑦) = (𝑑 𝑓) ↔ (𝑥 𝑦) = (𝑧 𝑓)))
189185, 1883anbi23d 1394 . . . . . . . . 9 (𝑑 = 𝑧 → ((((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑓))))
190 biidd 251 . . . . . . . . . . 11 (𝑓 = 𝑡 → ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ↔ (𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴))))
191 eqidd 2611 . . . . . . . . . . . . 13 (𝑓 = 𝑡𝐹 = 𝐹)
192 oveq2 6557 . . . . . . . . . . . . 13 (𝑓 = 𝑡 → (𝐸𝐼𝑓) = (𝐸𝐼𝑡))
193191, 192eleq12d 2682 . . . . . . . . . . . 12 (𝑓 = 𝑡 → (𝐹 ∈ (𝐸𝐼𝑓) ↔ 𝐹 ∈ (𝐸𝐼𝑡)))
194 oveq2 6557 . . . . . . . . . . . . 13 (𝑓 = 𝑡 → (𝐹 𝑓) = (𝐹 𝑡))
195 eqidd 2611 . . . . . . . . . . . . 13 (𝑓 = 𝑡 → (𝐵 𝐶) = (𝐵 𝐶))
196194, 195eqeq12d 2625 . . . . . . . . . . . 12 (𝑓 = 𝑡 → ((𝐹 𝑓) = (𝐵 𝐶) ↔ (𝐹 𝑡) = (𝐵 𝐶)))
197193, 196anbi12d 743 . . . . . . . . . . 11 (𝑓 = 𝑡 → ((𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶)) ↔ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))))
198190, 197anbi12d 743 . . . . . . . . . 10 (𝑓 = 𝑡 → (((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ↔ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶)))))
199 eqidd 2611 . . . . . . . . . . 11 (𝑓 = 𝑡 → (𝑥 𝑦) = (𝑥 𝑦))
200 oveq2 6557 . . . . . . . . . . 11 (𝑓 = 𝑡 → (𝑧 𝑓) = (𝑧 𝑡))
201199, 200eqeq12d 2625 . . . . . . . . . 10 (𝑓 = 𝑡 → ((𝑥 𝑦) = (𝑧 𝑓) ↔ (𝑥 𝑦) = (𝑧 𝑡)))
202198, 2013anbi23d 1394 . . . . . . . . 9 (𝑓 = 𝑡 → ((((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡))))
203189, 202cbvrex2v 3156 . . . . . . . 8 (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)) ↔ ∃𝑧𝑃𝑡𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡)))
204176, 203sylib 207 . . . . . . 7 (((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ∃𝑧𝑃𝑡𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑧) ∧ (𝐷 𝑧) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑡) ∧ (𝐹 𝑡) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑧 𝑡)))
205175, 204r19.29vva 3062 . . . . . 6 (((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
206205adantl3r 782 . . . . 5 ((((((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
207 simpr 476 . . . . . 6 (((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) → ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))
208 eqidd 2611 . . . . . . . . . . . 12 (𝑎 = 𝑥𝐴 = 𝐴)
209 oveq2 6557 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝐵𝐼𝑎) = (𝐵𝐼𝑥))
210208, 209eleq12d 2682 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝐴 ∈ (𝐵𝐼𝑎) ↔ 𝐴 ∈ (𝐵𝐼𝑥)))
211 oveq2 6557 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝐴 𝑎) = (𝐴 𝑥))
212 eqidd 2611 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝐸 𝐷) = (𝐸 𝐷))
213211, 212eqeq12d 2625 . . . . . . . . . . 11 (𝑎 = 𝑥 → ((𝐴 𝑎) = (𝐸 𝐷) ↔ (𝐴 𝑥) = (𝐸 𝐷)))
214210, 213anbi12d 743 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ↔ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷))))
215 biidd 251 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)) ↔ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))))
216214, 215anbi12d 743 . . . . . . . . 9 (𝑎 = 𝑥 → (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ↔ ((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)))))
217 oveq1 6556 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎 𝑐) = (𝑥 𝑐))
218 eqidd 2611 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑑 𝑓) = (𝑑 𝑓))
219217, 218eqeq12d 2625 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑎 𝑐) = (𝑑 𝑓) ↔ (𝑥 𝑐) = (𝑑 𝑓)))
220216, 2193anbi13d 1393 . . . . . . . 8 (𝑎 = 𝑥 → ((((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓))))
2212202rexbidv 3039 . . . . . . 7 (𝑎 = 𝑥 → (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)) ↔ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓))))
222 biidd 251 . . . . . . . . . 10 (𝑐 = 𝑦 → ((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ↔ (𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷))))
223 eqidd 2611 . . . . . . . . . . . 12 (𝑐 = 𝑦𝐶 = 𝐶)
224 oveq2 6557 . . . . . . . . . . . 12 (𝑐 = 𝑦 → (𝐵𝐼𝑐) = (𝐵𝐼𝑦))
225223, 224eleq12d 2682 . . . . . . . . . . 11 (𝑐 = 𝑦 → (𝐶 ∈ (𝐵𝐼𝑐) ↔ 𝐶 ∈ (𝐵𝐼𝑦)))
226 oveq2 6557 . . . . . . . . . . . 12 (𝑐 = 𝑦 → (𝐶 𝑐) = (𝐶 𝑦))
227 eqidd 2611 . . . . . . . . . . . 12 (𝑐 = 𝑦 → (𝐸 𝐹) = (𝐸 𝐹))
228226, 227eqeq12d 2625 . . . . . . . . . . 11 (𝑐 = 𝑦 → ((𝐶 𝑐) = (𝐸 𝐹) ↔ (𝐶 𝑦) = (𝐸 𝐹)))
229225, 228anbi12d 743 . . . . . . . . . 10 (𝑐 = 𝑦 → ((𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹)) ↔ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))))
230222, 229anbi12d 743 . . . . . . . . 9 (𝑐 = 𝑦 → (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ↔ ((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹)))))
231 oveq2 6557 . . . . . . . . . 10 (𝑐 = 𝑦 → (𝑥 𝑐) = (𝑥 𝑦))
232 eqidd 2611 . . . . . . . . . 10 (𝑐 = 𝑦 → (𝑑 𝑓) = (𝑑 𝑓))
233231, 232eqeq12d 2625 . . . . . . . . 9 (𝑐 = 𝑦 → ((𝑥 𝑐) = (𝑑 𝑓) ↔ (𝑥 𝑦) = (𝑑 𝑓)))
234230, 2333anbi13d 1393 . . . . . . . 8 (𝑐 = 𝑦 → ((((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓)) ↔ (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))))
2352342rexbidv 3039 . . . . . . 7 (𝑐 = 𝑦 → (∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑐) = (𝑑 𝑓)) ↔ ∃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓))))
236221, 235cbvrex2v 3156 . . . . . 6 (∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)) ↔ ∃𝑥𝑃𝑦𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)))
237207, 236sylib 207 . . . . 5 (((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) → ∃𝑥𝑃𝑦𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑥) ∧ (𝐴 𝑥) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑦) ∧ (𝐶 𝑦) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑥 𝑦) = (𝑑 𝑓)))
238206, 237r19.29vva 3062 . . . 4 (((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸))) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
239238anasss 677 . . 3 ((𝜑 ∧ (((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸)) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
240117, 239sylan2b 491 . 2 ((𝜑 ∧ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
241116, 240impbida 873 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  ⟨“cs3 13438  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  cgrGccgrg 25205  hlGchlg 25295  cgrAccgra 25499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206  df-leg 25278  df-hlg 25296  df-cgra 25500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator