Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgratr Structured version   Visualization version   GIF version

Theorem cgratr 25515
 Description: Angle congruence is transitive. Theorem 11.8 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 5-Mar-2020.)
Hypotheses
Ref Expression
cgraid.p 𝑃 = (Base‘𝐺)
cgraid.i 𝐼 = (Itv‘𝐺)
cgraid.g (𝜑𝐺 ∈ TarskiG)
cgraid.k 𝐾 = (hlG‘𝐺)
cgraid.a (𝜑𝐴𝑃)
cgraid.b (𝜑𝐵𝑃)
cgraid.c (𝜑𝐶𝑃)
cgracom.d (𝜑𝐷𝑃)
cgracom.e (𝜑𝐸𝑃)
cgracom.f (𝜑𝐹𝑃)
cgracom.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
cgratr.h (𝜑𝐻𝑃)
cgratr.i (𝜑𝑈𝑃)
cgratr.j (𝜑𝐽𝑃)
cgratr.1 (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩)
Assertion
Ref Expression
cgratr (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩)

Proof of Theorem cgratr
Dummy variables 𝑥 𝑦 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cgraid.p . . . . 5 𝑃 = (Base‘𝐺)
2 eqid 2610 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
3 eqid 2610 . . . . 5 (cgrG‘𝐺) = (cgrG‘𝐺)
4 cgraid.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 762 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐺 ∈ TarskiG)
6 cgraid.a . . . . . 6 (𝜑𝐴𝑃)
76ad3antrrr 762 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐴𝑃)
8 cgraid.b . . . . . 6 (𝜑𝐵𝑃)
98ad3antrrr 762 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐵𝑃)
10 cgraid.c . . . . . 6 (𝜑𝐶𝑃)
1110ad3antrrr 762 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝐶𝑃)
12 simpllr 795 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥𝑃)
13 cgratr.i . . . . . 6 (𝜑𝑈𝑃)
1413ad3antrrr 762 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑈𝑃)
15 simplr 788 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦𝑃)
16 cgraid.i . . . . . 6 𝐼 = (Itv‘𝐺)
17 simprlr 799 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴))
1817eqcomd 2616 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝐴) = (𝑈(dist‘𝐺)𝑥))
191, 2, 16, 5, 9, 7, 14, 12, 18tgcgrcomlr 25175 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐴(dist‘𝐺)𝐵) = (𝑥(dist‘𝐺)𝑈))
20 simprrr 801 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))
2120eqcomd 2616 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐵(dist‘𝐺)𝐶) = (𝑈(dist‘𝐺)𝑦))
225ad3antrrr 762 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐺 ∈ TarskiG)
237ad3antrrr 762 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐴𝑃)
249ad3antrrr 762 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐵𝑃)
2511ad3antrrr 762 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐶𝑃)
26 simpllr 795 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑢𝑃)
27 cgracom.e . . . . . . . . 9 (𝜑𝐸𝑃)
2827ad6antr 768 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐸𝑃)
29 simplr 788 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑣𝑃)
30 simpr1 1060 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩)
311, 2, 16, 3, 22, 23, 24, 25, 26, 28, 29, 30cgr3simp3 25217 . . . . . . 7 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐶(dist‘𝐺)𝐴) = (𝑣(dist‘𝐺)𝑢))
3212ad3antrrr 762 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑥𝑃)
3315ad3antrrr 762 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑦𝑃)
34 cgraid.k . . . . . . . . 9 𝐾 = (hlG‘𝐺)
35 cgracom.d . . . . . . . . . 10 (𝜑𝐷𝑃)
3635ad6antr 768 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐷𝑃)
37 cgracom.f . . . . . . . . . 10 (𝜑𝐹𝑃)
3837ad6antr 768 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐹𝑃)
3914ad3antrrr 762 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑈𝑃)
40 cgratr.j . . . . . . . . . . 11 (𝜑𝐽𝑃)
4140ad6antr 768 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐽𝑃)
42 cgratr.h . . . . . . . . . . . 12 (𝜑𝐻𝑃)
4342ad6antr 768 . . . . . . . . . . 11 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝐻𝑃)
44 cgratr.1 . . . . . . . . . . . 12 (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩)
4544ad6antr 768 . . . . . . . . . . 11 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩)
46 simprll 798 . . . . . . . . . . . 12 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑥(𝐾𝑈)𝐻)
4746ad3antrrr 762 . . . . . . . . . . 11 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑥(𝐾𝑈)𝐻)
481, 16, 34, 22, 36, 28, 38, 43, 39, 41, 45, 32, 47cgrahl1 25508 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑥𝑈𝐽”⟩)
49 simprrl 800 . . . . . . . . . . 11 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → 𝑦(𝐾𝑈)𝐽)
5049ad3antrrr 762 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑦(𝐾𝑈)𝐽)
511, 16, 34, 22, 36, 28, 38, 32, 39, 41, 48, 33, 50cgrahl2 25509 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝑥𝑈𝑦”⟩)
52 simpr2 1061 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑢(𝐾𝐸)𝐷)
53 simpr3 1062 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → 𝑣(𝐾𝐸)𝐹)
541, 2, 16, 3, 22, 23, 24, 25, 26, 28, 29, 30cgr3simp1 25215 . . . . . . . . . . . 12 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐴(dist‘𝐺)𝐵) = (𝑢(dist‘𝐺)𝐸))
5554eqcomd 2616 . . . . . . . . . . 11 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝑢(dist‘𝐺)𝐸) = (𝐴(dist‘𝐺)𝐵))
561, 2, 16, 22, 26, 28, 23, 24, 55tgcgrcomlr 25175 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐸(dist‘𝐺)𝑢) = (𝐵(dist‘𝐺)𝐴))
5718ad3antrrr 762 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐵(dist‘𝐺)𝐴) = (𝑈(dist‘𝐺)𝑥))
5856, 57eqtrd 2644 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐸(dist‘𝐺)𝑢) = (𝑈(dist‘𝐺)𝑥))
591, 2, 16, 3, 22, 23, 24, 25, 26, 28, 29, 30cgr3simp2 25216 . . . . . . . . . . 11 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐵(dist‘𝐺)𝐶) = (𝐸(dist‘𝐺)𝑣))
6059eqcomd 2616 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐸(dist‘𝐺)𝑣) = (𝐵(dist‘𝐺)𝐶))
6121ad3antrrr 762 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐵(dist‘𝐺)𝐶) = (𝑈(dist‘𝐺)𝑦))
6260, 61eqtrd 2644 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐸(dist‘𝐺)𝑣) = (𝑈(dist‘𝐺)𝑦))
631, 16, 34, 22, 36, 28, 38, 32, 39, 33, 51, 26, 2, 29, 52, 53, 58, 62cgracgr 25510 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝑢(dist‘𝐺)𝑣) = (𝑥(dist‘𝐺)𝑦))
641, 2, 16, 22, 26, 29, 32, 33, 63tgcgrcomlr 25175 . . . . . . 7 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝑣(dist‘𝐺)𝑢) = (𝑦(dist‘𝐺)𝑥))
6531, 64eqtrd 2644 . . . . . 6 (((((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) ∧ 𝑢𝑃) ∧ 𝑣𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)) → (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥))
66 cgracom.1 . . . . . . . 8 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
671, 16, 34, 4, 6, 8, 10, 35, 27, 37iscgra 25501 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑢𝑃𝑣𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹)))
6866, 67mpbid 221 . . . . . . 7 (𝜑 → ∃𝑢𝑃𝑣𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹))
6968ad3antrrr 762 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → ∃𝑢𝑃𝑣𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑢𝐸𝑣”⟩ ∧ 𝑢(𝐾𝐸)𝐷𝑣(𝐾𝐸)𝐹))
7065, 69r19.29vva 3062 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (𝐶(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝑥))
711, 2, 3, 5, 7, 9, 11, 12, 14, 15, 19, 21, 70trgcgr 25211 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝑈𝑦”⟩)
7271, 46, 493jca 1235 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝑈𝑦”⟩ ∧ 𝑥(𝐾𝑈)𝐻𝑦(𝐾𝑈)𝐽))
731, 16, 34, 4, 35, 27, 37, 42, 13, 40, 44cgrane3 25506 . . . . . 6 (𝜑𝑈𝐻)
7473necomd 2837 . . . . 5 (𝜑𝐻𝑈)
751, 16, 34, 4, 6, 8, 10, 35, 27, 37, 66cgrane1 25504 . . . . . 6 (𝜑𝐴𝐵)
7675necomd 2837 . . . . 5 (𝜑𝐵𝐴)
771, 16, 34, 13, 8, 6, 4, 42, 2, 74, 76hlcgrex 25311 . . . 4 (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)))
781, 16, 34, 4, 35, 27, 37, 42, 13, 40, 44cgrane4 25507 . . . . . 6 (𝜑𝑈𝐽)
7978necomd 2837 . . . . 5 (𝜑𝐽𝑈)
801, 16, 34, 4, 6, 8, 10, 35, 27, 37, 66cgrane2 25505 . . . . 5 (𝜑𝐵𝐶)
811, 16, 34, 13, 8, 10, 4, 40, 2, 79, 80hlcgrex 25311 . . . 4 (𝜑 → ∃𝑦𝑃 (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶)))
82 reeanv 3086 . . . 4 (∃𝑥𝑃𝑦𝑃 ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))) ↔ (∃𝑥𝑃 (𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ ∃𝑦𝑃 (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))))
8377, 81, 82sylanbrc 695 . . 3 (𝜑 → ∃𝑥𝑃𝑦𝑃 ((𝑥(𝐾𝑈)𝐻 ∧ (𝑈(dist‘𝐺)𝑥) = (𝐵(dist‘𝐺)𝐴)) ∧ (𝑦(𝐾𝑈)𝐽 ∧ (𝑈(dist‘𝐺)𝑦) = (𝐵(dist‘𝐺)𝐶))))
8472, 83reximddv2 3002 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝑈𝑦”⟩ ∧ 𝑥(𝐾𝑈)𝐻𝑦(𝐾𝑈)𝐽))
851, 16, 34, 4, 6, 8, 10, 42, 13, 40iscgra 25501 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝑈𝑦”⟩ ∧ 𝑥(𝐾𝑈)𝐻𝑦(𝐾𝑈)𝐽)))
8684, 85mpbird 246 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∃wrex 2897   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ⟨“cs3 13438  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  cgrGccgrg 25205  hlGchlg 25295  cgrAccgra 25499 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206  df-leg 25278  df-hlg 25296  df-cgra 25500 This theorem is referenced by:  cgraswaplr  25516  sacgr  25522  oacgr  25523  tgasa1  25539  isoas  25544
 Copyright terms: Public domain W3C validator