MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnconn1lem3 Structured version   Visualization version   GIF version

Theorem tgbtwnconn1lem3 25269
Description: Lemma for tgbtwnconn1 25270. (Contributed by Thierry Arnoux, 30-Apr-2019.)
Hypotheses
Ref Expression
tgbtwnconn1.p 𝑃 = (Base‘𝐺)
tgbtwnconn1.i 𝐼 = (Itv‘𝐺)
tgbtwnconn1.g (𝜑𝐺 ∈ TarskiG)
tgbtwnconn1.a (𝜑𝐴𝑃)
tgbtwnconn1.b (𝜑𝐵𝑃)
tgbtwnconn1.c (𝜑𝐶𝑃)
tgbtwnconn1.d (𝜑𝐷𝑃)
tgbtwnconn1.1 (𝜑𝐴𝐵)
tgbtwnconn1.2 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnconn1.3 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
tgbtwnconn1.m = (dist‘𝐺)
tgbtwnconn1.e (𝜑𝐸𝑃)
tgbtwnconn1.f (𝜑𝐹𝑃)
tgbtwnconn1.h (𝜑𝐻𝑃)
tgbtwnconn1.j (𝜑𝐽𝑃)
tgbtwnconn1.4 (𝜑𝐷 ∈ (𝐴𝐼𝐸))
tgbtwnconn1.5 (𝜑𝐶 ∈ (𝐴𝐼𝐹))
tgbtwnconn1.6 (𝜑𝐸 ∈ (𝐴𝐼𝐻))
tgbtwnconn1.7 (𝜑𝐹 ∈ (𝐴𝐼𝐽))
tgbtwnconn1.8 (𝜑 → (𝐸 𝐷) = (𝐶 𝐷))
tgbtwnconn1.9 (𝜑 → (𝐶 𝐹) = (𝐶 𝐷))
tgbtwnconn1.10 (𝜑 → (𝐸 𝐻) = (𝐵 𝐶))
tgbtwnconn1.11 (𝜑 → (𝐹 𝐽) = (𝐵 𝐷))
tgbtwnconn1.x (𝜑𝑋𝑃)
tgbtwnconn1.12 (𝜑𝑋 ∈ (𝐶𝐼𝐸))
tgbtwnconn1.13 (𝜑𝑋 ∈ (𝐷𝐼𝐹))
tgbtwnconn1.14 (𝜑𝐶𝐸)
Assertion
Ref Expression
tgbtwnconn1lem3 (𝜑𝐷 = 𝐹)

Proof of Theorem tgbtwnconn1lem3
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgbtwnconn1.p . . . . . 6 𝑃 = (Base‘𝐺)
2 tgbtwnconn1.m . . . . . 6 = (dist‘𝐺)
3 tgbtwnconn1.i . . . . . 6 𝐼 = (Itv‘𝐺)
4 tgbtwnconn1.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
54ad6antr 768 . . . . . 6 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐺 ∈ TarskiG)
6 tgbtwnconn1.f . . . . . . 7 (𝜑𝐹𝑃)
76ad6antr 768 . . . . . 6 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐹𝑃)
8 tgbtwnconn1.d . . . . . . 7 (𝜑𝐷𝑃)
98ad6antr 768 . . . . . 6 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐷𝑃)
10 simplr 788 . . . . . 6 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝑞𝑃)
115adantr 480 . . . . . . . . . 10 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → 𝐺 ∈ TarskiG)
129adantr 480 . . . . . . . . . 10 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → 𝐷𝑃)
13 simpllr 795 . . . . . . . . . 10 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → 𝑞𝑃)
141, 2, 3, 11, 12, 13tgcgrtriv 25179 . . . . . . . . 9 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → (𝐷 𝐷) = (𝑞 𝑞))
15 simpr 476 . . . . . . . . . . 11 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → 𝐹 = 𝑋)
16 tgbtwnconn1.x . . . . . . . . . . . . . 14 (𝜑𝑋𝑃)
1716ad6antr 768 . . . . . . . . . . . . 13 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝑋𝑃)
1817adantr 480 . . . . . . . . . . . 12 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → 𝑋𝑃)
19 tgbtwnconn1.c . . . . . . . . . . . . . . . 16 (𝜑𝐶𝑃)
20 tgbtwnconn1.e . . . . . . . . . . . . . . . 16 (𝜑𝐸𝑃)
21 tgbtwnconn1.12 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (𝐶𝐼𝐸))
22 eqidd 2611 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 𝐸) = (𝐶 𝐸))
23 eqidd 2611 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 𝐸) = (𝑋 𝐸))
24 tgbtwnconn1.9 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶 𝐹) = (𝐶 𝐷))
2524eqcomd 2616 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 𝐷) = (𝐶 𝐹))
26 tgbtwnconn1.8 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸 𝐷) = (𝐶 𝐷))
27 tgbtwnconn1.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝑃)
28 tgbtwnconn1.b . . . . . . . . . . . . . . . . . 18 (𝜑𝐵𝑃)
29 tgbtwnconn1.1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝐵)
30 tgbtwnconn1.2 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
31 tgbtwnconn1.3 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
32 tgbtwnconn1.h . . . . . . . . . . . . . . . . . 18 (𝜑𝐻𝑃)
33 tgbtwnconn1.j . . . . . . . . . . . . . . . . . 18 (𝜑𝐽𝑃)
34 tgbtwnconn1.4 . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ∈ (𝐴𝐼𝐸))
35 tgbtwnconn1.5 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ (𝐴𝐼𝐹))
36 tgbtwnconn1.6 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ (𝐴𝐼𝐻))
37 tgbtwnconn1.7 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (𝐴𝐼𝐽))
38 tgbtwnconn1.10 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸 𝐻) = (𝐵 𝐶))
39 tgbtwnconn1.11 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 𝐽) = (𝐵 𝐷))
401, 3, 4, 27, 28, 19, 8, 29, 30, 31, 2, 20, 6, 32, 33, 34, 35, 36, 37, 26, 24, 38, 39tgbtwnconn1lem2 25268 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸 𝐹) = (𝐶 𝐷))
4126, 40eqtr4d 2647 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 𝐷) = (𝐸 𝐹))
421, 2, 3, 4, 19, 16, 20, 8, 19, 16, 20, 6, 21, 21, 22, 23, 25, 41tgifscgr 25203 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 𝐷) = (𝑋 𝐹))
4342ad6antr 768 . . . . . . . . . . . . . 14 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝑋 𝐷) = (𝑋 𝐹))
4443adantr 480 . . . . . . . . . . . . 13 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → (𝑋 𝐷) = (𝑋 𝐹))
4515oveq2d 6565 . . . . . . . . . . . . 13 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → (𝑋 𝐹) = (𝑋 𝑋))
4644, 45eqtrd 2644 . . . . . . . . . . . 12 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → (𝑋 𝐷) = (𝑋 𝑋))
471, 2, 3, 11, 18, 12, 18, 46axtgcgrid 25162 . . . . . . . . . . 11 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → 𝑋 = 𝐷)
4815, 47eqtrd 2644 . . . . . . . . . 10 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → 𝐹 = 𝐷)
4948oveq1d 6564 . . . . . . . . 9 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → (𝐹 𝐷) = (𝐷 𝐷))
507adantr 480 . . . . . . . . . . . 12 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → 𝐹𝑃)
51 simp-4r 803 . . . . . . . . . . . . . 14 (((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) → 𝑝𝑃)
5251ad2antrr 758 . . . . . . . . . . . . 13 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝑝𝑃)
5352adantr 480 . . . . . . . . . . . 12 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → 𝑝𝑃)
54 simp-4r 803 . . . . . . . . . . . . 13 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝑟𝑃)
5554adantr 480 . . . . . . . . . . . 12 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → 𝑟𝑃)
5619ad6antr 768 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐶𝑃)
57 simpr 476 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐶 = 𝐹) → 𝐶 = 𝐹)
584adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐶 = 𝐹) → 𝐺 ∈ TarskiG)
5919adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐶 = 𝐹) → 𝐶𝑃)
606adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐶 = 𝐹) → 𝐹𝑃)
6120adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐶 = 𝐹) → 𝐸𝑃)
6224, 40eqtr4d 2647 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐶 𝐹) = (𝐸 𝐹))
6362adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐶 = 𝐹) → (𝐶 𝐹) = (𝐸 𝐹))
641, 2, 3, 58, 59, 60, 61, 60, 63, 57tgcgreq 25177 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐶 = 𝐹) → 𝐸 = 𝐹)
6557, 64eqtr4d 2647 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐶 = 𝐹) → 𝐶 = 𝐸)
66 tgbtwnconn1.14 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐶𝐸)
6766adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐶 = 𝐹) → 𝐶𝐸)
6867neneqd 2787 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐶 = 𝐹) → ¬ 𝐶 = 𝐸)
6965, 68pm2.65da 598 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ 𝐶 = 𝐹)
7069neqned 2789 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶𝐹)
7170necomd 2837 . . . . . . . . . . . . . . . . 17 (𝜑𝐹𝐶)
7271ad6antr 768 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐹𝐶)
73 simpllr 795 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋)))
7473simpld 474 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐶 ∈ (𝐹𝐼𝑟))
7520ad6antr 768 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐸𝑃)
761, 2, 3, 4, 19, 16, 20, 21tgbtwncom 25183 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ (𝐸𝐼𝐶))
7776ad6antr 768 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝑋 ∈ (𝐸𝐼𝐶))
78 simp-5r 805 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹)))
7978simpld 474 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐶 ∈ (𝐸𝐼𝑝))
801, 2, 3, 5, 75, 17, 56, 52, 77, 79tgbtwnexch3 25189 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐶 ∈ (𝑋𝐼𝑝))
811, 2, 3, 5, 17, 56, 52, 80tgbtwncom 25183 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐶 ∈ (𝑝𝐼𝑋))
8278simprd 478 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐶 𝑝) = (𝐶 𝐹))
8382eqcomd 2616 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐶 𝐹) = (𝐶 𝑝))
841, 2, 3, 5, 56, 7, 56, 52, 83tgcgrcomlr 25175 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐹 𝐶) = (𝑝 𝐶))
8573simprd 478 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐶 𝑟) = (𝐶 𝑋))
861, 2, 3, 5, 7, 52axtgcgrrflx 25161 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐹 𝑝) = (𝑝 𝐹))
871, 2, 3, 5, 7, 56, 54, 52, 56, 17, 52, 7, 72, 74, 81, 84, 85, 86, 82axtg5seg 25164 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝑟 𝑝) = (𝑋 𝐹))
8887eqcomd 2616 . . . . . . . . . . . . . 14 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝑋 𝐹) = (𝑟 𝑝))
891, 2, 3, 5, 17, 7, 54, 52, 88tgcgrcomlr 25175 . . . . . . . . . . . . 13 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐹 𝑋) = (𝑝 𝑟))
9089adantr 480 . . . . . . . . . . . 12 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → (𝐹 𝑋) = (𝑝 𝑟))
911, 2, 3, 11, 50, 18, 53, 55, 90, 15tgcgreq 25177 . . . . . . . . . . 11 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → 𝑝 = 𝑟)
92 simprr 792 . . . . . . . . . . . . . 14 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝑟 𝑞) = (𝑟 𝑝))
9392adantr 480 . . . . . . . . . . . . 13 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → (𝑟 𝑞) = (𝑟 𝑝))
9491oveq2d 6565 . . . . . . . . . . . . 13 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → (𝑟 𝑝) = (𝑟 𝑟))
9593, 94eqtrd 2644 . . . . . . . . . . . 12 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → (𝑟 𝑞) = (𝑟 𝑟))
961, 2, 3, 11, 55, 13, 55, 95axtgcgrid 25162 . . . . . . . . . . 11 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → 𝑟 = 𝑞)
9791, 96eqtrd 2644 . . . . . . . . . 10 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → 𝑝 = 𝑞)
9897oveq1d 6564 . . . . . . . . 9 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → (𝑝 𝑞) = (𝑞 𝑞))
9914, 49, 983eqtr4d 2654 . . . . . . . 8 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → (𝐹 𝐷) = (𝑝 𝑞))
1005adantr 480 . . . . . . . . 9 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹𝑋) → 𝐺 ∈ TarskiG)
1017adantr 480 . . . . . . . . 9 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹𝑋) → 𝐹𝑃)
10217adantr 480 . . . . . . . . 9 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹𝑋) → 𝑋𝑃)
1039adantr 480 . . . . . . . . 9 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹𝑋) → 𝐷𝑃)
10452adantr 480 . . . . . . . . 9 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹𝑋) → 𝑝𝑃)
10554adantr 480 . . . . . . . . 9 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹𝑋) → 𝑟𝑃)
106 simpllr 795 . . . . . . . . 9 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹𝑋) → 𝑞𝑃)
107 tgbtwnconn1.13 . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝐷𝐼𝐹))
1081, 2, 3, 4, 8, 16, 6, 107tgbtwncom 25183 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐹𝐼𝐷))
109108ad7antr 770 . . . . . . . . 9 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹𝑋) → 𝑋 ∈ (𝐹𝐼𝐷))
110 simplrl 796 . . . . . . . . 9 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹𝑋) → 𝑟 ∈ (𝑝𝐼𝑞))
11189adantr 480 . . . . . . . . 9 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹𝑋) → (𝐹 𝑋) = (𝑝 𝑟))
11287, 92, 433eqtr4rd 2655 . . . . . . . . . 10 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝑋 𝐷) = (𝑟 𝑞))
113112adantr 480 . . . . . . . . 9 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹𝑋) → (𝑋 𝐷) = (𝑟 𝑞))
1141, 2, 3, 100, 101, 102, 103, 104, 105, 106, 109, 110, 111, 113tgcgrextend 25180 . . . . . . . 8 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹𝑋) → (𝐹 𝐷) = (𝑝 𝑞))
11599, 114pm2.61dane 2869 . . . . . . 7 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐹 𝐷) = (𝑝 𝑞))
116 eqid 2610 . . . . . . . . 9 (LineG‘𝐺) = (LineG‘𝐺)
117 eqid 2610 . . . . . . . . 9 (cgrG‘𝐺) = (cgrG‘𝐺)
11866ad6antr 768 . . . . . . . . 9 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐶𝐸)
1191, 116, 3, 5, 56, 52, 75, 79btwncolg2 25251 . . . . . . . . 9 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐸 ∈ (𝐶(LineG‘𝐺)𝑝) ∨ 𝐶 = 𝑝))
12024ad6antr 768 . . . . . . . . . 10 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐶 𝐹) = (𝐶 𝐷))
12184adantr 480 . . . . . . . . . . . . 13 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → (𝐹 𝐶) = (𝑝 𝐶))
12248oveq1d 6564 . . . . . . . . . . . . 13 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → (𝐹 𝐶) = (𝐷 𝐶))
12397oveq1d 6564 . . . . . . . . . . . . 13 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → (𝑝 𝐶) = (𝑞 𝐶))
124121, 122, 1233eqtr3d 2652 . . . . . . . . . . . 12 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹 = 𝑋) → (𝐷 𝐶) = (𝑞 𝐶))
12556adantr 480 . . . . . . . . . . . . 13 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹𝑋) → 𝐶𝑃)
126 simpr 476 . . . . . . . . . . . . 13 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹𝑋) → 𝐹𝑋)
12784adantr 480 . . . . . . . . . . . . 13 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹𝑋) → (𝐹 𝐶) = (𝑝 𝐶))
12885eqcomd 2616 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐶 𝑋) = (𝐶 𝑟))
1291, 2, 3, 5, 56, 17, 56, 54, 128tgcgrcomlr 25175 . . . . . . . . . . . . . 14 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝑋 𝐶) = (𝑟 𝐶))
130129adantr 480 . . . . . . . . . . . . 13 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹𝑋) → (𝑋 𝐶) = (𝑟 𝐶))
1311, 2, 3, 100, 101, 102, 103, 104, 105, 106, 125, 125, 126, 109, 110, 111, 113, 127, 130axtg5seg 25164 . . . . . . . . . . . 12 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐹𝑋) → (𝐷 𝐶) = (𝑞 𝐶))
132124, 131pm2.61dane 2869 . . . . . . . . . . 11 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐷 𝐶) = (𝑞 𝐶))
1331, 2, 3, 5, 9, 56, 10, 56, 132tgcgrcomlr 25175 . . . . . . . . . 10 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐶 𝐷) = (𝐶 𝑞))
13482, 120, 1333eqtrd 2648 . . . . . . . . 9 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐶 𝑝) = (𝐶 𝑞))
13528ad6antr 768 . . . . . . . . . 10 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐵𝑃)
13633ad6antr 768 . . . . . . . . . 10 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐽𝑃)
1375adantr 480 . . . . . . . . . . . . . 14 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐵 = 𝐽) → 𝐺 ∈ TarskiG)
138136adantr 480 . . . . . . . . . . . . . 14 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐵 = 𝐽) → 𝐽𝑃)
13956adantr 480 . . . . . . . . . . . . . 14 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐵 = 𝐽) → 𝐶𝑃)
1401, 2, 3, 4, 27, 19, 6, 33, 35, 37tgbtwnexch 25193 . . . . . . . . . . . . . . . . 17 (𝜑𝐶 ∈ (𝐴𝐼𝐽))
1411, 2, 3, 4, 27, 28, 19, 33, 30, 140tgbtwnexch3 25189 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ (𝐵𝐼𝐽))
142141ad7antr 770 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐵 = 𝐽) → 𝐶 ∈ (𝐵𝐼𝐽))
143 simpr 476 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐵 = 𝐽) → 𝐵 = 𝐽)
144143oveq1d 6564 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐵 = 𝐽) → (𝐵𝐼𝐽) = (𝐽𝐼𝐽))
145142, 144eleqtrd 2690 . . . . . . . . . . . . . 14 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐵 = 𝐽) → 𝐶 ∈ (𝐽𝐼𝐽))
1461, 2, 3, 137, 138, 139, 145axtgbtwnid 25165 . . . . . . . . . . . . 13 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐵 = 𝐽) → 𝐽 = 𝐶)
1477adantr 480 . . . . . . . . . . . . . 14 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐵 = 𝐽) → 𝐹𝑃)
1481, 2, 3, 4, 27, 19, 6, 33, 35, 37tgbtwnexch3 25189 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ (𝐶𝐼𝐽))
1491, 2, 3, 4, 28, 19, 6, 33, 141, 148tgbtwnexch2 25191 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ (𝐵𝐼𝐽))
150149ad7antr 770 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐵 = 𝐽) → 𝐹 ∈ (𝐵𝐼𝐽))
151150, 144eleqtrd 2690 . . . . . . . . . . . . . 14 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐵 = 𝐽) → 𝐹 ∈ (𝐽𝐼𝐽))
1521, 2, 3, 137, 138, 147, 151axtgbtwnid 25165 . . . . . . . . . . . . 13 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐵 = 𝐽) → 𝐽 = 𝐹)
153146, 152eqtr3d 2646 . . . . . . . . . . . 12 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐵 = 𝐽) → 𝐶 = 𝐹)
15469ad7antr 770 . . . . . . . . . . . 12 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐵 = 𝐽) → ¬ 𝐶 = 𝐹)
155153, 154pm2.65da 598 . . . . . . . . . . 11 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → ¬ 𝐵 = 𝐽)
156155neqned 2789 . . . . . . . . . 10 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐵𝐽)
1571, 2, 3, 4, 27, 28, 8, 20, 31, 34tgbtwnexch 25193 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (𝐴𝐼𝐸))
1581, 3, 4, 27, 28, 19, 8, 29, 30, 31, 2, 20, 6, 32, 33, 34, 35, 36, 37, 26, 24, 38, 39tgbtwnconn1lem1 25267 . . . . . . . . . . . . . . 15 (𝜑𝐻 = 𝐽)
159158oveq2d 6565 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐼𝐻) = (𝐴𝐼𝐽))
16036, 159eleqtrd 2690 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ (𝐴𝐼𝐽))
1611, 2, 3, 4, 27, 28, 20, 33, 157, 160tgbtwnexch3 25189 . . . . . . . . . . . 12 (𝜑𝐸 ∈ (𝐵𝐼𝐽))
162161ad6antr 768 . . . . . . . . . . 11 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐸 ∈ (𝐵𝐼𝐽))
1631, 116, 3, 5, 135, 75, 136, 162btwncolg3 25252 . . . . . . . . . 10 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐽 ∈ (𝐵(LineG‘𝐺)𝐸) ∨ 𝐵 = 𝐸))
16470ad6antr 768 . . . . . . . . . . 11 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐶𝐹)
1651, 2, 3, 4, 6, 19, 28, 33, 148, 141tgbtwnintr 25188 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ (𝐹𝐼𝐵))
166165ad6antr 768 . . . . . . . . . . . 12 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐶 ∈ (𝐹𝐼𝐵))
1671, 116, 3, 5, 56, 135, 7, 166btwncolg2 25251 . . . . . . . . . . 11 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐹 ∈ (𝐶(LineG‘𝐺)𝐵) ∨ 𝐶 = 𝐵))
1685adantr 480 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐶 = 𝑟) → 𝐺 ∈ TarskiG)
16956adantr 480 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐶 = 𝑟) → 𝐶𝑃)
17054adantr 480 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐶 = 𝑟) → 𝑟𝑃)
17117adantr 480 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐶 = 𝑟) → 𝑋𝑃)
17285adantr 480 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐶 = 𝑟) → (𝐶 𝑟) = (𝐶 𝑋))
173 simpr 476 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐶 = 𝑟) → 𝐶 = 𝑟)
1741, 2, 3, 168, 169, 170, 169, 171, 172, 173tgcgreq 25177 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐶 = 𝑟) → 𝐶 = 𝑋)
17575adantr 480 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐶 = 𝑟) → 𝐸𝑃)
176 eqidd 2611 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐷 𝐹) = (𝐷 𝐹))
177 eqidd 2611 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋 𝐹) = (𝑋 𝐹))
17826eqcomd 2616 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐶 𝐷) = (𝐸 𝐷))
1791, 2, 3, 4, 19, 8, 20, 8, 178tgcgrcomlr 25175 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐷 𝐶) = (𝐷 𝐸))
1801, 2, 3, 4, 19, 6, 20, 6, 62tgcgrcomlr 25175 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐹 𝐶) = (𝐹 𝐸))
1811, 2, 3, 4, 8, 16, 6, 19, 8, 16, 6, 20, 107, 107, 176, 177, 179, 180tgifscgr 25203 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋 𝐶) = (𝑋 𝐸))
182181ad7antr 770 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐶 = 𝑟) → (𝑋 𝐶) = (𝑋 𝐸))
183174oveq2d 6565 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐶 = 𝑟) → (𝑋 𝐶) = (𝑋 𝑋))
184182, 183eqtr3d 2646 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐶 = 𝑟) → (𝑋 𝐸) = (𝑋 𝑋))
1851, 2, 3, 168, 171, 175, 171, 184axtgcgrid 25162 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐶 = 𝑟) → 𝑋 = 𝐸)
186174, 185eqtrd 2644 . . . . . . . . . . . . . 14 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐶 = 𝑟) → 𝐶 = 𝐸)
18766neneqd 2787 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝐶 = 𝐸)
188187ad7antr 770 . . . . . . . . . . . . . 14 ((((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) ∧ 𝐶 = 𝑟) → ¬ 𝐶 = 𝐸)
189186, 188pm2.65da 598 . . . . . . . . . . . . 13 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → ¬ 𝐶 = 𝑟)
190189neqned 2789 . . . . . . . . . . . 12 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐶𝑟)
1911, 2, 3, 5, 7, 56, 54, 74tgbtwncom 25183 . . . . . . . . . . . . 13 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐶 ∈ (𝑟𝐼𝐹))
1921, 116, 3, 5, 56, 7, 54, 191btwncolg2 25251 . . . . . . . . . . . 12 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝑟 ∈ (𝐶(LineG‘𝐺)𝐹) ∨ 𝐶 = 𝐹))
19392eqcomd 2616 . . . . . . . . . . . 12 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝑟 𝑝) = (𝑟 𝑞))
1941, 116, 3, 5, 56, 54, 7, 117, 52, 10, 2, 190, 192, 134, 193lncgr 25264 . . . . . . . . . . 11 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐹 𝑝) = (𝐹 𝑞))
1951, 116, 3, 5, 56, 7, 135, 117, 52, 10, 2, 164, 167, 134, 194lncgr 25264 . . . . . . . . . 10 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐵 𝑝) = (𝐵 𝑞))
196148ad6antr 768 . . . . . . . . . . . 12 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐹 ∈ (𝐶𝐼𝐽))
1971, 116, 3, 5, 56, 136, 7, 196btwncolg1 25250 . . . . . . . . . . 11 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐹 ∈ (𝐶(LineG‘𝐺)𝐽) ∨ 𝐶 = 𝐽))
1981, 116, 3, 5, 56, 7, 136, 117, 52, 10, 2, 164, 197, 134, 194lncgr 25264 . . . . . . . . . 10 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐽 𝑝) = (𝐽 𝑞))
1991, 116, 3, 5, 135, 136, 75, 117, 52, 10, 2, 156, 163, 195, 198lncgr 25264 . . . . . . . . 9 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐸 𝑝) = (𝐸 𝑞))
2001, 116, 3, 5, 56, 75, 52, 117, 10, 56, 2, 118, 119, 134, 199lnid 25265 . . . . . . . 8 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝑝 = 𝑞)
201200oveq1d 6564 . . . . . . 7 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝑝 𝑞) = (𝑞 𝑞))
202115, 201eqtrd 2644 . . . . . 6 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → (𝐹 𝐷) = (𝑞 𝑞))
2031, 2, 3, 5, 7, 9, 10, 202axtgcgrid 25162 . . . . 5 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐹 = 𝐷)
204203eqcomd 2616 . . . 4 (((((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) ∧ 𝑞𝑃) ∧ (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝))) → 𝐷 = 𝐹)
2054ad2antrr 758 . . . . . 6 (((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) → 𝐺 ∈ TarskiG)
206205ad2antrr 758 . . . . 5 (((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) → 𝐺 ∈ TarskiG)
207 simplr 788 . . . . 5 (((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) → 𝑟𝑃)
2081, 2, 3, 206, 51, 207, 207, 51axtgsegcon 25163 . . . 4 (((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) → ∃𝑞𝑃 (𝑟 ∈ (𝑝𝐼𝑞) ∧ (𝑟 𝑞) = (𝑟 𝑝)))
209204, 208r19.29a 3060 . . 3 (((((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) ∧ 𝑟𝑃) ∧ (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋))) → 𝐷 = 𝐹)
2106ad2antrr 758 . . . 4 (((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) → 𝐹𝑃)
21119ad2antrr 758 . . . 4 (((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) → 𝐶𝑃)
21216ad2antrr 758 . . . 4 (((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) → 𝑋𝑃)
2131, 2, 3, 205, 210, 211, 211, 212axtgsegcon 25163 . . 3 (((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) → ∃𝑟𝑃 (𝐶 ∈ (𝐹𝐼𝑟) ∧ (𝐶 𝑟) = (𝐶 𝑋)))
214209, 213r19.29a 3060 . 2 (((𝜑𝑝𝑃) ∧ (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹))) → 𝐷 = 𝐹)
2151, 2, 3, 4, 20, 19, 19, 6axtgsegcon 25163 . 2 (𝜑 → ∃𝑝𝑃 (𝐶 ∈ (𝐸𝐼𝑝) ∧ (𝐶 𝑝) = (𝐶 𝐹)))
216214, 215r19.29a 3060 1 (𝜑𝐷 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  cfv 5804  (class class class)co 6549  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136  cgrGccgrg 25205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206
This theorem is referenced by:  tgbtwnconn1  25270
  Copyright terms: Public domain W3C validator