MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgcgrrflx Structured version   Visualization version   GIF version

Theorem axtgcgrrflx 25161
Description: Axiom of reflexivity of congruence, Axiom A1 of [Schwabhauser] p. 10. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgcgrrflx.1 (𝜑𝑋𝑃)
axtgcgrrflx.2 (𝜑𝑌𝑃)
Assertion
Ref Expression
axtgcgrrflx (𝜑 → (𝑋 𝑌) = (𝑌 𝑋))

Proof of Theorem axtgcgrrflx
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 25152 . . . . 5 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss1 3795 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGC ∩ TarskiGB)
3 inss1 3795 . . . . . 6 (TarskiGC ∩ TarskiGB) ⊆ TarskiGC
42, 3sstri 3577 . . . . 5 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGC
51, 4eqsstri 3598 . . . 4 TarskiG ⊆ TarskiGC
6 axtrkg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
75, 6sseldi 3566 . . 3 (𝜑𝐺 ∈ TarskiGC)
8 axtrkg.p . . . . . 6 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . 6 = (dist‘𝐺)
10 axtrkg.i . . . . . 6 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgc 25153 . . . . 5 (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
1211simprbi 479 . . . 4 (𝐺 ∈ TarskiGC → (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦)))
1312simpld 474 . . 3 (𝐺 ∈ TarskiGC → ∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥))
147, 13syl 17 . 2 (𝜑 → ∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥))
15 axtgcgrrflx.1 . . 3 (𝜑𝑋𝑃)
16 axtgcgrrflx.2 . . 3 (𝜑𝑌𝑃)
17 oveq1 6556 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
18 oveq2 6557 . . . . 5 (𝑥 = 𝑋 → (𝑦 𝑥) = (𝑦 𝑋))
1917, 18eqeq12d 2625 . . . 4 (𝑥 = 𝑋 → ((𝑥 𝑦) = (𝑦 𝑥) ↔ (𝑋 𝑦) = (𝑦 𝑋)))
20 oveq2 6557 . . . . 5 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
21 oveq1 6556 . . . . 5 (𝑦 = 𝑌 → (𝑦 𝑋) = (𝑌 𝑋))
2220, 21eqeq12d 2625 . . . 4 (𝑦 = 𝑌 → ((𝑋 𝑦) = (𝑦 𝑋) ↔ (𝑋 𝑌) = (𝑌 𝑋)))
2319, 22rspc2v 3293 . . 3 ((𝑋𝑃𝑌𝑃) → (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) → (𝑋 𝑌) = (𝑌 𝑋)))
2415, 16, 23syl2anc 691 . 2 (𝜑 → (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) → (𝑋 𝑌) = (𝑌 𝑋)))
2514, 24mpd 15 1 (𝜑 → (𝑋 𝑌) = (𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3o 1030   = wceq 1475  wcel 1977  {cab 2596  wral 2896  {crab 2900  Vcvv 3173  [wsbc 3402  cdif 3537  cin 3539  {csn 4125  cfv 5804  (class class class)co 6549  cmpt2 6551  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  TarskiGCcstrkgc 25130  TarskiGBcstrkgb 25131  TarskiGCBcstrkgcb 25132  Itvcitv 25135  LineGclng 25136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-trkgc 25147  df-trkg 25152
This theorem is referenced by:  tgcgrcomimp  25172  tgcgrcomr  25173  tgcgrcoml  25174  tgcgrcomlr  25175  tgbtwnconn1lem1  25267  tgbtwnconn1lem2  25268  tgbtwnconn1lem3  25269  miriso  25365  symquadlem  25384  midexlem  25387  footex  25413  colperpexlem1  25422  opphllem  25427  cgraswap  25512  isoas  25544  f1otrg  25551
  Copyright terms: Public domain W3C validator