Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgcgrcomlr | Structured version Visualization version GIF version |
Description: Congruence commutes on both sides. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgcgrcomlr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgcgrcomlr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgcgrcomlr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgcgrcomlr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgcgrcomlr.6 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
Ref | Expression |
---|---|
tgcgrcomlr | ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐷 − 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcgrcomlr.6 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
2 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
4 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tkgeom.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | tgcgrcomlr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | tgcgrcomlr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
8 | 2, 3, 4, 5, 6, 7 | axtgcgrrflx 25161 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐴)) |
9 | tgcgrcomlr.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
10 | tgcgrcomlr.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
11 | 2, 3, 4, 5, 9, 10 | axtgcgrrflx 25161 | . 2 ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐷 − 𝐶)) |
12 | 1, 8, 11 | 3eqtr3d 2652 | 1 ⊢ (𝜑 → (𝐵 − 𝐴) = (𝐷 − 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 distcds 15777 TarskiGcstrkg 25129 Itvcitv 25135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-nul 4717 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-iota 5768 df-fv 5812 df-ov 6552 df-trkgc 25147 df-trkg 25152 |
This theorem is referenced by: tgcgrextend 25180 tgifscgr 25203 tgcgrsub 25204 iscgrglt 25209 trgcgrg 25210 tgcgrxfr 25213 cgr3swap12 25218 cgr3swap23 25219 tgbtwnxfr 25225 lnext 25262 tgbtwnconn1lem1 25267 tgbtwnconn1lem2 25268 tgbtwnconn1lem3 25269 tgbtwnconn1 25270 legov2 25281 legtri3 25285 legbtwn 25289 tgcgrsub2 25290 miriso 25365 mircgrextend 25377 mirtrcgr 25378 miduniq 25380 colmid 25383 symquadlem 25384 krippenlem 25385 midexlem 25387 ragcom 25393 ragflat 25399 ragcgr 25402 footex 25413 colperpexlem1 25422 mideulem2 25426 opphllem 25427 opphllem3 25441 lmiisolem 25488 hypcgrlem1 25491 trgcopy 25496 trgcopyeulem 25497 iscgra1 25502 cgracgr 25510 cgraswap 25512 cgrcgra 25513 cgracom 25514 cgratr 25515 dfcgra2 25521 sacgr 25522 acopy 25524 acopyeu 25525 cgrg3col4 25534 tgsas1 25535 tgsas3 25538 tgasa1 25539 |
Copyright terms: Public domain | W3C validator |