Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgbtwnintr | Structured version Visualization version GIF version |
Description: Inner transitivity law for betweenness. Left-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwnintr.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwnintr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwnintr.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwnintr.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgbtwnintr.5 | ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼𝐷)) |
tgbtwnintr.6 | ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐷)) |
Ref | Expression |
---|---|
tgbtwnintr | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tkgeom.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | tkgeom.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tkgeom.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad2antrr 758 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐺 ∈ TarskiG) |
6 | tgbtwnintr.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | 6 | ad2antrr 758 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 ∈ 𝑃) |
8 | simplr 788 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ 𝑃) | |
9 | simprr 792 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ (𝐵𝐼𝐵)) | |
10 | 1, 2, 3, 5, 7, 8, 9 | axtgbtwnid 25165 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 = 𝑥) |
11 | simprl 790 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝑥 ∈ (𝐴𝐼𝐶)) | |
12 | 10, 11 | eqeltrd 2688 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) → 𝐵 ∈ (𝐴𝐼𝐶)) |
13 | tgbtwnintr.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
14 | tgbtwnintr.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
15 | tgbtwnintr.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
16 | tgbtwnintr.5 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼𝐷)) | |
17 | tgbtwnintr.6 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐷)) | |
18 | 1, 2, 3, 4, 6, 13, 14, 15, 6, 16, 17 | axtgpasch 25166 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ 𝑥 ∈ (𝐵𝐼𝐵))) |
19 | 12, 18 | r19.29a 3060 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 distcds 15777 TarskiGcstrkg 25129 Itvcitv 25135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-nul 4717 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-iota 5768 df-fv 5812 df-ov 6552 df-trkgb 25148 df-trkg 25152 |
This theorem is referenced by: tgbtwnexch3 25189 tgbtwnexch2 25191 tgbtwnconn1lem3 25269 tgbtwnconn3 25272 tgbtwnconn22 25274 tglineeltr 25326 mirconn 25373 |
Copyright terms: Public domain | W3C validator |