Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgcgreq | Structured version Visualization version GIF version |
Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgcgrcomlr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgcgrcomlr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgcgrcomlr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgcgrcomlr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgcgrcomlr.6 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
tgcgreq.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
tgcgreq | ⊢ (𝜑 → 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcgreq.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
4 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tkgeom.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | tgcgrcomlr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | tgcgrcomlr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
8 | tgcgrcomlr.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
9 | tgcgrcomlr.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
10 | tgcgrcomlr.6 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | tgcgreqb 25176 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) |
12 | 1, 11 | mpbid 221 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 distcds 15777 TarskiGcstrkg 25129 Itvcitv 25135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-nul 4717 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-iota 5768 df-fv 5812 df-ov 6552 df-trkgc 25147 df-trkg 25152 |
This theorem is referenced by: tgcgrextend 25180 tgidinside 25266 tgbtwnconn1lem3 25269 krippenlem 25385 ragcgr 25402 lmiisolem 25488 cgrg3col4 25534 |
Copyright terms: Public domain | W3C validator |