MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgbtwnid Structured version   Visualization version   GIF version

Theorem axtgbtwnid 25165
Description: Identity of Betweenness. Axiom A6 of [Schwabhauser] p. 11. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgbtwnid.1 (𝜑𝑋𝑃)
axtgbtwnid.2 (𝜑𝑌𝑃)
axtgbtwnid.3 (𝜑𝑌 ∈ (𝑋𝐼𝑋))
Assertion
Ref Expression
axtgbtwnid (𝜑𝑋 = 𝑌)

Proof of Theorem axtgbtwnid
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑧 𝑎 𝑏 𝑣 𝑠 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 25152 . . . . 5 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss1 3795 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGC ∩ TarskiGB)
3 inss2 3796 . . . . . 6 (TarskiGC ∩ TarskiGB) ⊆ TarskiGB
42, 3sstri 3577 . . . . 5 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGB
51, 4eqsstri 3598 . . . 4 TarskiG ⊆ TarskiGB
6 axtrkg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
75, 6sseldi 3566 . . 3 (𝜑𝐺 ∈ TarskiGB)
8 axtrkg.p . . . . . 6 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . 6 = (dist‘𝐺)
10 axtrkg.i . . . . . 6 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgb 25154 . . . . 5 (𝐺 ∈ TarskiGB ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦)))))
1211simprbi 479 . . . 4 (𝐺 ∈ TarskiGB → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑧) ∧ 𝑣 ∈ (𝑦𝐼𝑧)) → ∃𝑎𝑃 (𝑎 ∈ (𝑢𝐼𝑦) ∧ 𝑎 ∈ (𝑣𝐼𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑃𝑡 ∈ 𝒫 𝑃(∃𝑎𝑃𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝐼𝑦))))
1312simp1d 1066 . . 3 (𝐺 ∈ TarskiGB → ∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦))
147, 13syl 17 . 2 (𝜑 → ∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦))
15 axtgbtwnid.3 . 2 (𝜑𝑌 ∈ (𝑋𝐼𝑋))
16 axtgbtwnid.1 . . 3 (𝜑𝑋𝑃)
17 axtgbtwnid.2 . . 3 (𝜑𝑌𝑃)
18 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
1918, 18oveq12d 6567 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝐼𝑥) = (𝑋𝐼𝑋))
2019eleq2d 2673 . . . . 5 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑥) ↔ 𝑦 ∈ (𝑋𝐼𝑋)))
21 eqeq1 2614 . . . . 5 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
2220, 21imbi12d 333 . . . 4 (𝑥 = 𝑋 → ((𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) ↔ (𝑦 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑦)))
23 eleq1 2676 . . . . 5 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑋) ↔ 𝑌 ∈ (𝑋𝐼𝑋)))
24 eqeq2 2621 . . . . 5 (𝑦 = 𝑌 → (𝑋 = 𝑦𝑋 = 𝑌))
2523, 24imbi12d 333 . . . 4 (𝑦 = 𝑌 → ((𝑦 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑦) ↔ (𝑌 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑌)))
2622, 25rspc2v 3293 . . 3 ((𝑋𝑃𝑌𝑃) → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) → (𝑌 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑌)))
2716, 17, 26syl2anc 691 . 2 (𝜑 → (∀𝑥𝑃𝑦𝑃 (𝑦 ∈ (𝑥𝐼𝑥) → 𝑥 = 𝑦) → (𝑌 ∈ (𝑋𝐼𝑋) → 𝑋 = 𝑌)))
2814, 15, 27mp2d 47 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3o 1030  w3a 1031   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  [wsbc 3402  cdif 3537  cin 3539  𝒫 cpw 4108  {csn 4125  cfv 5804  (class class class)co 6549  cmpt2 6551  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  TarskiGCcstrkgc 25130  TarskiGBcstrkgb 25131  TarskiGCBcstrkgcb 25132  Itvcitv 25135  LineGclng 25136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-trkgb 25148  df-trkg 25152
This theorem is referenced by:  tgbtwncom  25183  tgbtwnne  25185  tgbtwnswapid  25187  tgbtwnintr  25188  tgifscgr  25203  tgidinside  25266  tgbtwnconn1lem3  25269  coltr3  25343  mirinv  25361  miriso  25365  krippenlem  25385  midexlem  25387  colperpexlem3  25424  oppne3  25435  oppnid  25438  opphllem1  25439  hlpasch  25448  midid  25473  lmiisolem  25488  f1otrg  25551
  Copyright terms: Public domain W3C validator