Step | Hyp | Ref
| Expression |
1 | | fucpropd.1 |
. . . 4
⊢ (𝜑 → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
2 | | fucpropd.2 |
. . . 4
⊢ (𝜑 →
(compf‘𝐴) = (compf‘𝐵)) |
3 | | fucpropd.3 |
. . . 4
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
4 | | fucpropd.4 |
. . . 4
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) |
5 | | fucpropd.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ Cat) |
6 | | fucpropd.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ Cat) |
7 | | fucpropd.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
8 | | fucpropd.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | funcpropd 16383 |
. . 3
⊢ (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
10 | 9 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
11 | | nfv 1830 |
. . . 4
⊢
Ⅎ𝑟(𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) |
12 | | nfcsb1v 3515 |
. . . . 5
⊢
Ⅎ𝑟⦋(1st ‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} |
13 | 12 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → Ⅎ𝑟⦋(1st ‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
14 | | fvex 6113 |
. . . . 5
⊢
(1st ‘𝑓) ∈ V |
15 | 14 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → (1st ‘𝑓) ∈ V) |
16 | | nfv 1830 |
. . . . . 6
⊢
Ⅎ𝑠((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) |
17 | | nfcsb1v 3515 |
. . . . . . 7
⊢
Ⅎ𝑠⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} |
18 | 17 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → Ⅎ𝑠⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
19 | | fvex 6113 |
. . . . . . 7
⊢
(1st ‘𝑔) ∈ V |
20 | 19 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → (1st ‘𝑔) ∈ V) |
21 | | eqid 2610 |
. . . . . . . . . . 11
⊢
(Base‘𝐶) =
(Base‘𝐶) |
22 | | eqid 2610 |
. . . . . . . . . . 11
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
23 | | eqid 2610 |
. . . . . . . . . . 11
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
24 | 3 | ad4antr 764 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
25 | | eqid 2610 |
. . . . . . . . . . . . 13
⊢
(Base‘𝐴) =
(Base‘𝐴) |
26 | | simplr 788 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑟 = (1st ‘𝑓)) |
27 | | relfunc 16345 |
. . . . . . . . . . . . . . 15
⊢ Rel
(𝐴 Func 𝐶) |
28 | | simpllr 795 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) |
29 | 28 | simpld 474 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑓 ∈ (𝐴 Func 𝐶)) |
30 | | 1st2ndbr 7108 |
. . . . . . . . . . . . . . 15
⊢ ((Rel
(𝐴 Func 𝐶) ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (1st ‘𝑓)(𝐴 Func 𝐶)(2nd ‘𝑓)) |
31 | 27, 29, 30 | sylancr 694 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → (1st ‘𝑓)(𝐴 Func 𝐶)(2nd ‘𝑓)) |
32 | 26, 31 | eqbrtrd 4605 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑟(𝐴 Func 𝐶)(2nd ‘𝑓)) |
33 | 25, 21, 32 | funcf1 16349 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑟:(Base‘𝐴)⟶(Base‘𝐶)) |
34 | 33 | ffvelrnda 6267 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑟‘𝑥) ∈ (Base‘𝐶)) |
35 | | simpr 476 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑠 = (1st ‘𝑔)) |
36 | 28 | simprd 478 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑔 ∈ (𝐴 Func 𝐶)) |
37 | | 1st2ndbr 7108 |
. . . . . . . . . . . . . . 15
⊢ ((Rel
(𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)) → (1st ‘𝑔)(𝐴 Func 𝐶)(2nd ‘𝑔)) |
38 | 27, 36, 37 | sylancr 694 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → (1st ‘𝑔)(𝐴 Func 𝐶)(2nd ‘𝑔)) |
39 | 35, 38 | eqbrtrd 4605 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑠(𝐴 Func 𝐶)(2nd ‘𝑔)) |
40 | 25, 21, 39 | funcf1 16349 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑠:(Base‘𝐴)⟶(Base‘𝐶)) |
41 | 40 | ffvelrnda 6267 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑠‘𝑥) ∈ (Base‘𝐶)) |
42 | 21, 22, 23, 24, 34, 41 | homfeqval 16180 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = ((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥))) |
43 | 42 | ixpeq2dva 7809 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥))) |
44 | 1 | homfeqbas 16179 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝐴) = (Base‘𝐵)) |
45 | 44 | ad3antrrr 762 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → (Base‘𝐴) = (Base‘𝐵)) |
46 | 45 | ixpeq1d 7806 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) = X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥))) |
47 | 43, 46 | eqtrd 2644 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥))) |
48 | | fveq2 6103 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑟‘𝑥) = (𝑟‘𝑧)) |
49 | | fveq2 6103 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑠‘𝑥) = (𝑠‘𝑧)) |
50 | 48, 49 | oveq12d 6567 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = ((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) |
51 | 50 | cbvixpv 7812 |
. . . . . . . . . 10
⊢ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) |
52 | 51 | eleq2i 2680 |
. . . . . . . . 9
⊢ (𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ↔ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) |
53 | 45 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) → (Base‘𝐴) = (Base‘𝐵)) |
54 | 53 | adantr 480 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵)) |
55 | | eqid 2610 |
. . . . . . . . . . . . 13
⊢ (Hom
‘𝐴) = (Hom
‘𝐴) |
56 | | eqid 2610 |
. . . . . . . . . . . . 13
⊢ (Hom
‘𝐵) = (Hom
‘𝐵) |
57 | 1 | ad6antr 768 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
58 | | simplr 788 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴)) |
59 | | simpr 476 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑦 ∈ (Base‘𝐴)) |
60 | 25, 55, 56, 57, 58, 59 | homfeqval 16180 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦)) |
61 | | eqid 2610 |
. . . . . . . . . . . . . 14
⊢
(comp‘𝐶) =
(comp‘𝐶) |
62 | | eqid 2610 |
. . . . . . . . . . . . . 14
⊢
(comp‘𝐷) =
(comp‘𝐷) |
63 | 3 | ad7antr 770 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
64 | 4 | ad7antr 770 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) →
(compf‘𝐶) = (compf‘𝐷)) |
65 | 34 | adantlr 747 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑟‘𝑥) ∈ (Base‘𝐶)) |
66 | 65 | ad2antrr 758 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑟‘𝑥) ∈ (Base‘𝐶)) |
67 | 33 | ad2antrr 758 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑟:(Base‘𝐴)⟶(Base‘𝐶)) |
68 | 67 | ffvelrnda 6267 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑟‘𝑦) ∈ (Base‘𝐶)) |
69 | 68 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑟‘𝑦) ∈ (Base‘𝐶)) |
70 | 40 | ad2antrr 758 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑠:(Base‘𝐴)⟶(Base‘𝐶)) |
71 | 70 | ffvelrnda 6267 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑠‘𝑦) ∈ (Base‘𝐶)) |
72 | 71 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑠‘𝑦) ∈ (Base‘𝐶)) |
73 | 32 | ad3antrrr 762 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑟(𝐴 Func 𝐶)(2nd ‘𝑓)) |
74 | 25, 55, 22, 73, 58, 59 | funcf2 16351 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(2nd ‘𝑓)𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝑟‘𝑥)(Hom ‘𝐶)(𝑟‘𝑦))) |
75 | 74 | ffvelrnda 6267 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑥(2nd ‘𝑓)𝑦)‘ℎ) ∈ ((𝑟‘𝑥)(Hom ‘𝐶)(𝑟‘𝑦))) |
76 | | simplr 788 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) |
77 | | fveq2 6103 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑦 → (𝑟‘𝑧) = (𝑟‘𝑦)) |
78 | | fveq2 6103 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑦 → (𝑠‘𝑧) = (𝑠‘𝑦)) |
79 | 77, 78 | oveq12d 6567 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑦 → ((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) = ((𝑟‘𝑦)(Hom ‘𝐶)(𝑠‘𝑦))) |
80 | 79 | fvixp 7799 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ X𝑧 ∈
(Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑎‘𝑦) ∈ ((𝑟‘𝑦)(Hom ‘𝐶)(𝑠‘𝑦))) |
81 | 76, 80 | sylan 487 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑎‘𝑦) ∈ ((𝑟‘𝑦)(Hom ‘𝐶)(𝑠‘𝑦))) |
82 | 81 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑎‘𝑦) ∈ ((𝑟‘𝑦)(Hom ‘𝐶)(𝑠‘𝑦))) |
83 | 21, 22, 61, 62, 63, 64, 66, 69, 72, 75, 82 | comfeqval 16191 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = ((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ))) |
84 | 41 | adantlr 747 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑠‘𝑥) ∈ (Base‘𝐶)) |
85 | 84 | ad2antrr 758 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑠‘𝑥) ∈ (Base‘𝐶)) |
86 | | fveq2 6103 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑥 → (𝑟‘𝑧) = (𝑟‘𝑥)) |
87 | | fveq2 6103 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑥 → (𝑠‘𝑧) = (𝑠‘𝑥)) |
88 | 86, 87 | oveq12d 6567 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑥 → ((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) = ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥))) |
89 | 88 | fvixp 7799 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ X𝑧 ∈
(Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑎‘𝑥) ∈ ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥))) |
90 | 89 | adantll 746 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑎‘𝑥) ∈ ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥))) |
91 | 90 | ad2antrr 758 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑎‘𝑥) ∈ ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥))) |
92 | 39 | ad3antrrr 762 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑠(𝐴 Func 𝐶)(2nd ‘𝑔)) |
93 | 25, 55, 22, 92, 58, 59 | funcf2 16351 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(2nd ‘𝑔)𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝑠‘𝑥)(Hom ‘𝐶)(𝑠‘𝑦))) |
94 | 93 | ffvelrnda 6267 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑥(2nd ‘𝑔)𝑦)‘ℎ) ∈ ((𝑠‘𝑥)(Hom ‘𝐶)(𝑠‘𝑦))) |
95 | 21, 22, 61, 62, 63, 64, 66, 85, 72, 91, 94 | comfeqval 16191 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))) |
96 | 83, 95 | eqeq12d 2625 |
. . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
97 | 60, 96 | raleqbidva 3131 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
98 | 54, 97 | raleqbidva 3131 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
99 | 53, 98 | raleqbidva 3131 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
100 | 52, 99 | sylan2b 491 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥))) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
101 | 47, 100 | rabeqbidva 3169 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → {𝑎 ∈ X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = {𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
102 | | csbeq1a 3508 |
. . . . . . . 8
⊢ (𝑠 = (1st ‘𝑔) → {𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
103 | 102 | adantl 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → {𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
104 | 101, 103 | eqtrd 2644 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → {𝑎 ∈ X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
105 | 16, 18, 20, 104 | csbiedf 3520 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
106 | | csbeq1a 3508 |
. . . . . 6
⊢ (𝑟 = (1st ‘𝑓) →
⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
107 | 106 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
108 | 105, 107 | eqtrd 2644 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
109 | 11, 13, 15, 108 | csbiedf 3520 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
110 | 9, 10, 109 | mpt2eq123dva 6614 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝐴 Func 𝐶), 𝑔 ∈ (𝐴 Func 𝐶) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))}) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑔 ∈ (𝐵 Func 𝐷) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))})) |
111 | | eqid 2610 |
. . 3
⊢ (𝐴 Nat 𝐶) = (𝐴 Nat 𝐶) |
112 | 111, 25, 55, 22, 61 | natfval 16429 |
. 2
⊢ (𝐴 Nat 𝐶) = (𝑓 ∈ (𝐴 Func 𝐶), 𝑔 ∈ (𝐴 Func 𝐶) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))}) |
113 | | eqid 2610 |
. . 3
⊢ (𝐵 Nat 𝐷) = (𝐵 Nat 𝐷) |
114 | | eqid 2610 |
. . 3
⊢
(Base‘𝐵) =
(Base‘𝐵) |
115 | 113, 114,
56, 23, 62 | natfval 16429 |
. 2
⊢ (𝐵 Nat 𝐷) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑔 ∈ (𝐵 Func 𝐷) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
116 | 110, 112,
115 | 3eqtr4g 2669 |
1
⊢ (𝜑 → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷)) |