Step | Hyp | Ref
| Expression |
1 | | trgcopy.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
2 | | trgcopy.m |
. . 3
⊢ − =
(dist‘𝐺) |
3 | | trgcopy.i |
. . 3
⊢ 𝐼 = (Itv‘𝐺) |
4 | | trgcopy.l |
. . 3
⊢ 𝐿 = (LineG‘𝐺) |
5 | | trgcopy.k |
. . 3
⊢ 𝐾 = (hlG‘𝐺) |
6 | | trgcopy.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
7 | | trgcopy.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
8 | | trgcopy.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
9 | | trgcopy.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
10 | | trgcopy.d |
. . 3
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
11 | | trgcopy.e |
. . 3
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
12 | | trgcopy.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
13 | | trgcopy.1 |
. . 3
⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
14 | | trgcopy.2 |
. . 3
⊢ (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) |
15 | | trgcopy.3 |
. . 3
⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15 | trgcopy 25496 |
. 2
⊢ (𝜑 → ∃𝑓 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) |
17 | 6 | ad5antr 766 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐺 ∈ TarskiG) |
18 | 7 | ad5antr 766 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐴 ∈ 𝑃) |
19 | 8 | ad5antr 766 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐵 ∈ 𝑃) |
20 | 9 | ad5antr 766 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐶 ∈ 𝑃) |
21 | 10 | ad5antr 766 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐷 ∈ 𝑃) |
22 | 11 | ad5antr 766 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐸 ∈ 𝑃) |
23 | 12 | ad5antr 766 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐹 ∈ 𝑃) |
24 | 13 | ad5antr 766 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
25 | 14 | ad5antr 766 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) |
26 | 15 | ad5antr 766 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
27 | | simpl 472 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝑥 = 𝑎) |
28 | 27 | eleq1d 2672 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝑥 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ↔ 𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)))) |
29 | | simpr 476 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝑦 = 𝑏) |
30 | 29 | eleq1d 2672 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝑦 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ↔ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸)))) |
31 | 28, 30 | anbi12d 743 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → ((𝑥 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ↔ (𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))))) |
32 | | simpr 476 |
. . . . . . . . . . . 12
⊢ (((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → 𝑧 = 𝑡) |
33 | | simpll 786 |
. . . . . . . . . . . . 13
⊢ (((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → 𝑥 = 𝑎) |
34 | | simplr 788 |
. . . . . . . . . . . . 13
⊢ (((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → 𝑦 = 𝑏) |
35 | 33, 34 | oveq12d 6567 |
. . . . . . . . . . . 12
⊢ (((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → (𝑥𝐼𝑦) = (𝑎𝐼𝑏)) |
36 | 32, 35 | eleq12d 2682 |
. . . . . . . . . . 11
⊢ (((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑡 ∈ (𝑎𝐼𝑏))) |
37 | 36 | cbvrexdva 3154 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑥𝐼𝑦) ↔ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))) |
38 | 31, 37 | anbi12d 743 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (((𝑥 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑥𝐼𝑦)) ↔ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏)))) |
39 | 38 | cbvopabv 4654 |
. . . . . . . 8
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑥𝐼𝑦))} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))} |
40 | | simp-5r 805 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑓 ∈ 𝑃) |
41 | | simp-4r 803 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑘 ∈ 𝑃) |
42 | | simpllr 795 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) |
43 | 42 | simpld 474 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉) |
44 | | simplr 788 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) |
45 | 42 | simprd 478 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) |
46 | | simpr 476 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) |
47 | 1, 2, 3, 4, 5, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 39, 40, 41, 43, 44, 45, 46 | trgcopyeulem 25497 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑓 = 𝑘) |
48 | 47 | anasss 677 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉 ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘) |
49 | 48 | anasss 677 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉 ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))) → 𝑓 = 𝑘) |
50 | 49 | ex 449 |
. . . 4
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑃) ∧ 𝑘 ∈ 𝑃) → (((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉 ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘)) |
51 | 50 | anasss 677 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑃 ∧ 𝑘 ∈ 𝑃)) → (((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉 ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘)) |
52 | 51 | ralrimivva 2954 |
. 2
⊢ (𝜑 → ∀𝑓 ∈ 𝑃 ∀𝑘 ∈ 𝑃 (((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉 ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘)) |
53 | | eqidd 2611 |
. . . . . 6
⊢ (𝑓 = 𝑘 → 𝐷 = 𝐷) |
54 | | eqidd 2611 |
. . . . . 6
⊢ (𝑓 = 𝑘 → 𝐸 = 𝐸) |
55 | | id 22 |
. . . . . 6
⊢ (𝑓 = 𝑘 → 𝑓 = 𝑘) |
56 | 53, 54, 55 | s3eqd 13460 |
. . . . 5
⊢ (𝑓 = 𝑘 → 〈“𝐷𝐸𝑓”〉 = 〈“𝐷𝐸𝑘”〉) |
57 | 56 | breq2d 4595 |
. . . 4
⊢ (𝑓 = 𝑘 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ↔ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉)) |
58 | | breq1 4586 |
. . . 4
⊢ (𝑓 = 𝑘 → (𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹 ↔ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) |
59 | 57, 58 | anbi12d 743 |
. . 3
⊢ (𝑓 = 𝑘 → ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉 ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))) |
60 | 59 | reu4 3367 |
. 2
⊢
(∃!𝑓 ∈
𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ↔ (∃𝑓 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ ∀𝑓 ∈ 𝑃 ∀𝑘 ∈ 𝑃 (((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑘”〉 ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘))) |
61 | 16, 52, 60 | sylanbrc 695 |
1
⊢ (𝜑 → ∃!𝑓 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑓”〉 ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) |